Bibliothèques Azure Data Lake Analytics pour PythonAzure Data Lake Analytics libraries for python
Vue d'ensembleOverview
Exécutez des travaux d’analyse Big Data mis à l’échelle de manière à obtenir des jeux de données conséquents avec Azure Data Lake Analytics.Run big data analysis jobs that scale to massive data sets with Azure Data Lake Analytics.
Installer les bibliothèquesInstall the libraries
API de gestionManagement API
Utilisez l’API de gestion pour gérer les comptes, les travaux, les stratégies et les catalogues Data Lake Analytics.Use the management API to manage Data Lake Analytics accounts, jobs, policies, and catalogs.
pip install azure-mgmt-datalake-analytics
ExemplesExample
Il s’agit d’un exemple de la création d’un compte Data Lake Analytics et de l’envoi d’un travail.This is an example of how to create a Data Lake Analytics account and submit a job.
## Required for Azure Resource Manager
from azure.mgmt.resource.resources import ResourceManagementClient
from azure.mgmt.resource.resources.models import ResourceGroup
## Required for Azure Data Lake Store account management
from azure.mgmt.datalake.store import DataLakeStoreAccountManagementClient
from azure.mgmt.datalake.store.models import DataLakeStoreAccount
## Required for Azure Data Lake Store filesystem management
from azure.datalake.store import core, lib, multithread
## Required for Azure Data Lake Analytics account management
from azure.mgmt.datalake.analytics.account import DataLakeAnalyticsAccountManagementClient
from azure.mgmt.datalake.analytics.account.models import DataLakeAnalyticsAccount, DataLakeStoreAccountInfo
## Required for Azure Data Lake Analytics job management
from azure.mgmt.datalake.analytics.job import DataLakeAnalyticsJobManagementClient
from azure.mgmt.datalake.analytics.job.models import JobInformation, JobState, USqlJobProperties
subid= '<Azure Subscription ID>'
rg = '<Azure Resource Group Name>'
location = '<Location>' # i.e. 'eastus2'
adls = '<Azure Data Lake Store Account Name>'
adls = '<Azure Data Lake Analytics Account Name>'
# Create the clients
resourceClient = ResourceManagementClient(credentials, subid)
adlaAcctClient = DataLakeAnalyticsAccountManagementClient(credentials, subid)
adlaJobClient = DataLakeAnalyticsJobManagementClient( credentials, 'azuredatalakeanalytics.net')
# Create resource group
armGroupResult = resourceClient.resource_groups.create_or_update(rg, ResourceGroup(location=location))
# Create a store account
adlaAcctResult = adlaAcctClient.account.create(
rg,
adla,
DataLakeAnalyticsAccount(
location=location,
default_data_lake_store_account=adls,
data_lake_store_accounts=[DataLakeStoreAccountInfo(name=adls)]
)
).wait()
# Create an ADLA account
adlaAcctResult = adlaAcctClient.account.create(
rg,
adla,
DataLakeAnalyticsAccount(
location=location,
default_data_lake_store_account=adls,
data_lake_store_accounts=[DataLakeStoreAccountInfo(name=adls)]
)
).wait()
# Submit a job
script = """
@a =
SELECT * FROM
(VALUES
("Contoso", 1500.0),
("Woodgrove", 2700.0)
) AS
D( customer, amount );
OUTPUT @a
TO "/data.csv"
USING Outputters.Csv();
"""
jobId = str(uuid.uuid4())
jobResult = adlaJobClient.job.create(
adla,
jobId,
JobInformation(
name='Sample Job',
type='USql',
properties=USqlJobProperties(script=script)
)
)
ExemplesSamples
Gérer Azure Data Lake AnalyticsManage Azure Data Lake Anyalytics