TruncationSelectionPolicy Class
Defines an early termination policy that cancels a given percentage of runs at each evaluation interval.
Constructor
TruncationSelectionPolicy(*, delay_evaluation: int = 0, evaluation_interval: int = 0, truncation_percentage: int = 0)
Keyword-Only Parameters
Name | Description |
---|---|
delay_evaluation
|
Number of intervals by which to delay the first evaluation. Defaults to 0. |
evaluation_interval
|
Interval (number of runs) between policy evaluations. Defaults to 0. |
truncation_percentage
|
The percentage of runs to cancel at each evaluation interval. Defaults to 0. |
Examples
Configuring an early termination policy for a hyperparameter sweep job using TruncationStoppingPolicy
from azure.ai.ml import command
job = command(
inputs=dict(kernel="linear", penalty=1.0),
compute=cpu_cluster,
environment=f"{job_env.name}:{job_env.version}",
code="./scripts",
command="python scripts/train.py --kernel $kernel --penalty $penalty",
experiment_name="sklearn-iris-flowers",
)
# we can reuse an existing Command Job as a function that we can apply inputs to for the sweep configurations
from azure.ai.ml.sweep import QUniform, TruncationSelectionPolicy, Uniform
job_for_sweep = job(
kernel=Uniform(min_value=0.0005, max_value=0.005),
penalty=QUniform(min_value=0.05, max_value=0.75, q=1),
)
sweep_job = job_for_sweep.sweep(
sampling_algorithm="random",
primary_metric="best_val_acc",
goal="Maximize",
max_total_trials=8,
max_concurrent_trials=4,
early_termination_policy=TruncationSelectionPolicy(delay_evaluation=5, evaluation_interval=2),
)
Collaborer avec nous sur GitHub
La source de ce contenu se trouve sur GitHub, où vous pouvez également créer et examiner les problèmes et les demandes de tirage. Pour plus d’informations, consultez notre guide du contributeur.
Azure SDK for Python