BanditPolicy Classe
Définit une stratégie d’arrêt anticipé en fonction de critères de slack et d’un intervalle de fréquence et de délai pour l’évaluation.
- Héritage
-
azure.ai.ml.entities._job.sweep.early_termination_policy.EarlyTerminationPolicyBanditPolicy
Constructeur
BanditPolicy(*, delay_evaluation: int = 0, evaluation_interval: int = 0, slack_amount: float = 0, slack_factor: float = 0)
Paramètres de mot clé uniquement
Nom | Description |
---|---|
delay_evaluation
|
Nombre d’intervalles par lesquels retarder la première évaluation. La valeur par défaut est 0. |
evaluation_interval
|
Intervalle (nombre d’exécutions) entre les évaluations de stratégie. La valeur par défaut est 0. |
slack_amount
|
Distance absolue autorisée par rapport à l’exécution la plus performante. La valeur par défaut est 0. |
slack_factor
|
Ratio de la distance autorisée par rapport à l’exécution la plus performante. La valeur par défaut est 0. |
Exemples
Configuration de l’arrêt anticipé banditPolicy d’un balayage d’hyperparamètre sur un travail de commande.
from azure.ai.ml import command
job = command(
inputs=dict(kernel="linear", penalty=1.0),
compute=cpu_cluster,
environment=f"{job_env.name}:{job_env.version}",
code="./scripts",
command="python scripts/train.py --kernel $kernel --penalty $penalty",
experiment_name="sklearn-iris-flowers",
)
# we can reuse an existing Command Job as a function that we can apply inputs to for the sweep configurations
from azure.ai.ml.sweep import Uniform
job_for_sweep = job(
kernel=Uniform(min_value=0.0005, max_value=0.005),
penalty=Uniform(min_value=0.9, max_value=0.99),
)
from azure.ai.ml.sweep import BanditPolicy
sweep_job = job_for_sweep.sweep(
sampling_algorithm="random",
primary_metric="best_val_acc",
goal="Maximize",
max_total_trials=8,
max_concurrent_trials=4,
early_termination_policy=BanditPolicy(slack_factor=0.15, evaluation_interval=1, delay_evaluation=10),
)
Azure SDK for Python