operator== (<complex>)
Tests d'égalité entre deux nombres complexes, un ou un qui peut appartenir au sous-ensemble du type pour les vraies et parties imaginaires.
template<class Type>
bool operator==(
const complex<Type>& _Left,
const complex<Type>& _Right
);
template<class Type>
bool operator==(
const complex<Type>& _Left,
const Type& _Right
);
template<class Type>
bool operator==(
const Type& _Left,
const complex<Type>& _Right
);
Paramètres
_Left
Un nombre complexe ou un objet de son type de paramètre à tester pour l'inégalité._Right
Un nombre complexe ou un objet de son type de paramètre à tester pour l'inégalité.
Valeur de retour
true si les nombres sont égaux ; false si les nombres ne sont pas égales.
Notes
Deux nombres complexes sont égales si et seulement si les parties réelles sont égales et les parties imaginaires sont égales.Sinon, ils sont inégaux.
L'exécution est surchargée afin que les tests de comparaison puissent être exécutés sans conversion des données dans un format particulier.
Exemple
// complex_op_EQ.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> compared with type complex<double>
complex <double> cl1 ( polar ( 3.0 , pi / 6 ) );
complex <double> cr1a ( polar ( 3.0 , pi /6 ) );
complex <double> cr1b ( polar ( 2.0 , pi / 3 ) );
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The 1st right-side complex number is cr1a = " << cr1a << endl;
cout << "The 2nd right-side complex number is cr1b = " << cr1b << endl;
if ( cl1 == cr1a )
cout << "The complex numbers cl1 & cr1a are equal." << endl;
else
cout << "The complex numbers cl1 & cr1a are not equal." << endl;
if ( cl1 == cr1b )
cout << "The complex numbers cl1 & cr1b are equal." << endl;
else
cout << "The complex numbers cl1 & cr1b are not equal." << endl;
cout << endl;
// Example of the second member function
// type complex<int> compared with type int
complex <int> cl2a ( 3 , 4 );
complex <int> cl2b ( 5 ,0 );
int cr2a =3;
int cr2b =5;
cout << "The 1st left-side complex number is cl2a = " << cl2a << endl;
cout << "The 1st right-side complex number is cr2a = " << cr2a << endl;
if ( cl2a == cr2a )
cout << "The complex numbers cl2a & cr2a are equal." << endl;
else
cout << "The complex numbers cl2a & cr2a are not equal." << endl;
cout << "The 2nd left-side complex number is cl2b = " << cl2b << endl;
cout << "The 2nd right-side complex number is cr2b = " << cr2b << endl;
if ( cl2b == cr2b )
cout << "The complex numbers cl2b & cr2b are equal." << endl;
else
cout << "The complex numbers cl2b & cr2b are not equal." << endl;
cout << endl;
// Example of the third member function
// type double compared with type complex<double>
double cl3a =3;
double cl3b =5;
complex <double> cr3a (3 , 4 );
complex <double> cr3b (5 ,0 );
cout << "The 1st left-side complex number is cl3a = " << cl3a << endl;
cout << "The 1st right-side complex number is cr3a = " << cr3a << endl;
if ( cl3a == cr3a )
cout << "The complex numbers cl3a & cr3a are equal." << endl;
else
cout << "The complex numbers cl3a & cr3a are not equal." << endl;
cout << "The 2nd left-side complex number is cl3b = " << cl3b << endl;
cout << "The 2nd right-side complex number is cr3b = " << cr3b << endl;
if ( cl3b == cr3b )
cout << "The complex numbers cl3b & cr3b are equal." << endl;
else
cout << "The complex numbers cl3b & cr3b are not equal." << endl;
cout << endl;
}
Configuration requise
en-tête : <complex>
l'espace de noms : DST