Neural Network (réseau neuronal) (Visionneuse du modèle d'exploration de données)
Utilisez la visionneuse Neuron Net pour explorer les modèles d’exploration de données basés sur l’algorithme Microsoft Neural Network ou l’algorithme Microsoft Logistic Regression.
Pour plus d’informations : Algorithme de réseau neuronal Microsoft, algorithme de régression logistique Microsoft, parcourir un modèle à l’aide de la visionneuse de réseau neuronal Microsoft
Options
Actualiser le contenu de la visionneuse
Recharge le modèle d'exploration de données dans la visionneuse.
Modèle d'exploration de données
Choisissez un modèle d'exploration de données à afficher, parmi ceux de la structure d'exploration de données active. Le modèle d'exploration de données s'ouvre dans sa visionneuse associée.
Observateur
Choisissez la visionneuse à utiliser pour explorer le modèle d'exploration de données sélectionné. Vous pouvez utiliser la visionneuse personnalisée ou la Visionneuse de l'arborescence de contenu générique Microsoft. Vous pouvez également utiliser les visionneuses de plug-in, le cas échéant.
Input
Utilisez cette zone pour choisir des valeurs et des attributs d'entrée, afin que vous puissiez ultérieurement explorer la manière dont ils affectent les résultats.
Valeur | Description |
---|---|
Attribut | Choisissez un attribut d'entrée dans la liste. Si vous conservez la sélection comme valeur par défaut, <Tout>, le graphique affiche une liste de tous les attributs d’entrée, classés par leur impact sur l’attribut prévisible. |
Valeur | Choisissez la valeur de l'attribut d'entrée. |
Sortie
Utilisez ces contrôles pour choisir un attribut prédictible et une valeur à analyser et comparer dans le graphique à barres. Si vous ne modifiez pas les sélections, le graphique à barres compare les deux états principaux de résultats.
Valeur | Description |
---|---|
Attribut de sortie | Choisissez un attribut prédictible. Si vous ne définissez pas la colonne comme prédictible lors de la création du modèle, vous ne pouvez pas l'ajouter ici. |
Valeur 1 | Choisissez l’état de l’attribut prédictible à comparer à l’état contenu dans Valeur 2. Vous pouvez comparer deux valeurs discrètes ou discrétisées ; toutefois, vous ne pouvez pas comparer une valeur à son complément, comme c'est le cas dans d'autres visionneuses. |
Valeur 2 | Choisissez l’état de l’attribut prédictible à comparer à l’état contenu dans Valeur 1. |
Variables
Cette partie de l’onglet Réseau neuronal contient un histogramme interactif, qui répond aux sélections que vous avez effectuées pour les attributs d’entrée et de résultat. Étant donné qu'un réseau neuronal calcule la probabilité qu'une valeur particulière influence un résultat particulier, vous pouvez choisir n'importe quelle combinaison d'entrées ; le graphique à barres affiche la manière dont cette combinaison affecte la paire de résultats que vous comparez.
Valeur | Description |
---|---|
Attribut | Affiche le nom de l’attribut d’entrée que vous avez sélectionné dans Attribut. |
Valeur | Affiche la valeur de l'attribut d'entrée sélectionné. |
Favorise la <valeur 1> | Affiche une barre indiquant dans quelle proportion cette combinaison particulière attribut-valeur affecte les résultats cibles sélectionnés dans Valeur 1. |
Favorise la <valeur 2> | Affiche une barre indiquant dans quelle proportion cette combinaison particulière attribut-valeur affecte les résultats cibles sélectionnés dans Valeur 2. |
Voir aussi
Algorithmes d’exploration de données (Analysis Services - Exploration de données)
Visionneuses de modèles d’exploration de données (Concepteur de modèles d’exploration de données)
Visionneuses de modèle d’exploration de données