lognormal_distribution, classe
Génère une distribution suivant une loi log-normale.
template<class RealType = double> class lognormal_distribution { public: // types typedef RealType result_type; struct param_type; // constructor and reset functions explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0); explicit lognormal_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& gen); template<class URNG> result_type operator()(URNG& gen, const param_type& parm); // property functions RealType m() const; RealType s() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
Paramètres
- RealType
Le type des résultats à virgule flottante est double par défaut. Pour plus d'informations sur les types possibles, voir <random>.
Notes
La classe de modèle décrit une distribution qui produit des valeurs d'un type intégral spécifié par l'utilisateur, ou du type double si aucun n'est fourni, distribuées selon une loi log-normale. Le tableau suivant contient des liens vers des articles sur différents membres.
lognormal_distribution::m |
lognormal_distribution::param |
|
lognormal_distribution::operator() |
lognormal_distribution::s |
Les fonctions de propriété m() et s() retournent les valeurs des paramètres de distribution stockés m et s, respectivement.
Pour plus d'informations sur les classes de distribution et leurs membres, voir <random>.
Pour plus d'informations sur la distribution suivant une loi log-normale, voir l'article de Wolfram MathWorld LogNormal Distribution.
Exemple
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
using namespace std;
void test(const double m, const double s, const int samples) {
// uncomment to use a non-deterministic seed
// random_device gen;
// mt19937 gen(rd());
mt19937 gen(1701);
lognormal_distribution<> distr(m, s);
cout << endl;
cout << "min() == " << distr.min() << endl;
cout << "max() == " << distr.max() << endl;
cout << "m() == " << fixed << setw(11) << setprecision(10) << distr.m() << endl;
cout << "s() == " << fixed << setw(11) << setprecision(10) << distr.s() << endl;
// generate the distribution as a histogram
map<double, int> histogram;
for (int i = 0; i < samples; ++i) {
++histogram[distr(gen)];
}
// print results
cout << "Distribution for " << samples << " samples:" << endl;
int counter = 0;
for (const auto& elem : histogram) {
cout << fixed << setw(11) << ++counter << ": "
<< setw(14) << setprecision(10) << elem.first << endl;
}
cout << endl;
}
int main()
{
double m_dist = 1;
double s_dist = 1;
int samples = 10;
cout << "Use CTRL-Z to bypass data entry and run using default values." << endl;
cout << "Enter a floating point value for the 'm' distribution parameter: ";
cin >> m_dist;
cout << "Enter a floating point value for the 's' distribution parameter (must be greater than zero): ";
cin >> s_dist;
cout << "Enter an integer value for the sample count: ";
cin >> samples;
test(m_dist, s_dist, samples);
}
Sortie
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'm' distribution parameter: 0
Enter a floating point value for the 's' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
m() == 0.0000000000
s() == 1.0000000000
Distribution for 10 samples:
1: 0.3862809339
2: 0.4128865601
3: 0.4490576787
4: 0.4862035428
5: 0.5930607126
6: 0.8190778771
7: 0.8902379317
8: 2.8332911667
9: 5.1359445565
10: 5.4406507912
Configuration requise
En-tête : <random>
Espace de noms : std