fisher_f_distribution, classe
Génère une distribution selon la loi de Fisher.
template<class RealType = double> class fisher_f_distribution { public: // types typedef RealType result_type; struct param_type; // constructor and reset functions explicit fisher_f_distribution(RealType m = 1.0, RealType n = 1.0); explicit fisher_f_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& gen); template<class URNG> result_type operator()(URNG& gen, const param_type& parm); // property functions RealType m() const; RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
Paramètres
- RealType
Le type des résultats à virgule flottante est double par défaut. Pour plus d'informations sur les types possibles, voir <random>.
Notes
La classe de modèle décrit une distribution qui produit des valeurs d'un type intégral spécifié par l'utilisateur, ou du type double si aucun n'est fourni, distribuées selon une loi de Fisher. Le tableau suivant contient des liens vers des articles sur différents membres.
fisher_f_distribution::m |
fisher_f_distribution::param |
|
fisher_f_distribution::operator() |
fisher_f_distribution::n |
Les fonctions de propriété m() et n() retournent les valeurs des paramètres de distribution stockés m et n, respectivement.
Pour plus d'informations sur les classes de distribution et leurs membres, voir <random>.
Pour plus d'informations sur la distribution selon la loi de Fisher, voir l'article de Wolfram MathWorld F-Distribution.
Exemple
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double m, const double n, const int s) {
// uncomment to use a non-deterministic seed
// std::random_device rd;
// std::mt19937 gen(rd());
std::mt19937 gen(1701);
std::fisher_f_distribution<> distr(m, n);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "m() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.m() << std::endl;
std::cout << "n() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.n() << std::endl;
// generate the distribution as a histogram
std::map<double, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
int counter = 0;
for (const auto& elem : histogram) {
std::cout << std::fixed << std::setw(11) << ++counter << ": "
<< std::setw(14) << std::setprecision(10) << elem.first << std::endl;
}
std::cout << std::endl;
}
int main()
{
double m_dist = 1;
double n_dist = 1;
int samples = 10;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the \'m\' distribution parameter (must be greater than zero): ";
std::cin >> m_dist;
std::cout << "Enter a floating point value for the \'n\' distribution parameter (must be greater than zero): ";
std::cin >> n_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(m_dist, n_dist, samples);
}
Sortie
Première exécution :
Enter a floating point value for the 'm' distribution parameter (must be greater than zero): 1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == 0
max() == 1.79769e+308
m() == 1.0000000000
n() == 1.0000000000
Distribution for 10 samples:
1: 0.0204569549
2: 0.0221376644
3: 0.0297234962
4: 0.1600937252
5: 0.2775342196
6: 0.3950701700
7: 0.8363200295
8: 0.9512500702
9: 2.7844815974
10: 3.4320929653
Deuxième exécution :
Enter a floating point value for the 'm' distribution parameter (must be greater than zero): 1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): .1
Enter an integer value for the sample count: 10
min() == 0
max() == 1.79769e+308
m() == 1.0000000000
n() == 0.1000000000
Distribution for 10 samples:
1: 0.0977725649
2: 0.5304122767
3: 4.9468518084
4: 25.1012074939
5: 48.8082121613
6: 401.8075539377
7: 8199.5947873699
8: 226492.6855335717
9: 2782062.6639740225
10: 20829747131.7185860000
Troisième exécution :
Enter a floating point value for the 'm' distribution parameter (must be greater than zero): .1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == 0
max() == 1.79769e+308
m() == 0.1000000000
n() == 1.0000000000
Distribution for 10 samples:
1: 0.0000000000
2: 0.0000000000
3: 0.0000000000
4: 0.0000000000
5: 0.0000000033
6: 0.0000073975
7: 0.0000703800
8: 0.0280427735
9: 0.2660239949
10: 3.4363333954
Configuration requise
En-tête : <random>
Espace de noms : std