Partager via


Informations de référence sur la fonction complète BrainScript

Cette section fournit des informations sur les fonctions intégrées BrainScript.

Les déclarations de toutes les fonctions intégrées se trouvent dans la CNTK.core.bs située en regard du binaire CNTK.

Les opérations primitives et les couches sont déclarées dans l’espace de noms global. Des opérations supplémentaires sont déclarées dans les espaces de noms et sont fournies avec le préfixe respectif (par exemple, BS.RNN.LSTMP).

Couches

Génération de couches

Fonctions d’activation

Opérations au niveau des éléments, unaire

Opérations au niveau de l’élément, binaire

Opérations au niveau des éléments, ternaires

Opérations de produit et de convolution de matrice

  • Times(A, B, outputRank=1)
    A * B
  • TransposeTimes(A, B, outputRank=1)
  • Convolution(weights, x, kernelShape, mapDims=(0), stride=(1), sharing=(true), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW', maxTempMemSizeInSamples=0)
  • Pooling(x, poolKind/*'max'|'average'*/, kernelShape, stride=(1), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW')
  • ROIPooling(x, rois, roiOutputShape, spatialScale=1.0/16.0)

Paramètres et constantes appris

  • ParameterTensor {shape, learningRateMultiplier=1.0, init='uniform'/*|gaussian*/, initValueScale=1.0, initValue=0.0, randomSeed=-1, initFromFilePath=''}
  • Constant {scalarValue, rows = 1, cols = 1}
  • BS.Constants.Zero, BS.Constants.One
    BS.Constants.True, BS.Constants.False, BS.Constants.None
  • BS.Constants.OnesTensor (shape)
  • BS.Constants.ZeroSequenceLike (x)

Entrées

  • Input (shape, dynamicAxis='', sparse=false, tag='feature')
  • DynamicAxis{}
  • EnvironmentInput (propertyName)
    Mean (x), InvStdDev (x)

Fonctions de perte et métriques

Réductions

Opérations d’entraînement

  • BatchNormalization (input, scale, bias, runMean, runInvStdDev, spatial, normalizationTimeConstant = 0, blendTimeConstant = 0, epsilon = 0.00001, useCntkEngine = true, imageLayout='CHW')
  • Dropout (x)
  • Stabilize (x, enabled=true)
    StabilizeElements (x, inputDim=x.dim, enabled=true)
  • CosDistanceWithNegativeSamples (x, y, numShifts, numNegSamples)

Remodelage des opérations

  • CNTK2.Reshape (x, shape, beginAxis=0, endAxis=0)
    ReshapeDimension (x, axis, shape) = CNTK2.Reshape (x, shape, beginAxis=axis, endAxis=axis + 1)
    FlattenDimensions (x, axis, num) = CNTK2.Reshape (x, 0, beginAxis=axis, endAxis=axis + num)
    SplitDimension (x, axis, N) = ReshapeDimension (x, axis, 0:N)
  • Slice (beginIndex, endIndex, input, axis=1)
    BS.Sequences.First (x) = Slice (0, 1, x, axis=-1)
    BS.Sequences.Last (x) = Slice (-1, 0, x, axis=-1)
  • Splice (inputs, axis=1)
  • TransposeDimensions (x, axis1, axis2)
    Transpose (x) = TransposeDimensions (x, 1, 2)
  • BS.Sequences.BroadcastSequenceAs (type, data1)
  • BS.Sequences.Gather (where, x)
    BS.Sequences.Scatter (where, y)
    BS.Sequences.IsFirst (x)
    BS.Sequences.IsLast (x)

Récurrence

  • OptimizedRNNStack(weights, input, hiddenDims, numLayers=1, bidirectional=false, recurrentOp='lstm')
  • BS.Loop.Previous (x, timeStep=1, defaultHiddenActivation=0)
    PastValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Previous (0, shape, ...)
  • BS.Loop.Next (x, timeStep=1, defaultHiddenActivation=0)
    FutureValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Next (0, shape, ...)
  • LSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, aux=BS.Constants.None, auxDim=aux.shape, prevState, enableSelfStabilization=false)
  • BS.Boolean.Toggle (clk, initialValue=BS.Constants.False)
  • BS.RNNs.RecurrentLSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, previousHook=BS.RNNs.PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputDim=0, layerIndex=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.shape, previousHook=PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputShape=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentBirectionalLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.dim, previousHook=PreviousHC, nextHook=NextHC, enableSelfStabilization=false)

Prise en charge de séquence à séquence

  • BS.Seq2Seq.CreateAugmentWithFixedWindowAttentionHook (attentionDim, attentionSpan, decoderDynamicAxis, encoderOutput, enableSelfStabilization=false)
  • BS.Seq2Seq.GreedySequenceDecoderFrom (modelAsTrained)
  • BS.Seq2Seq.BeamSearchSequenceDecoderFrom (modelAsTrained, beamDepth)

Opérations à usage spécial

  • ClassBasedCrossEntropyWithSoftmax (labelClassDescriptorVectorSequence, mainInputInfo, mainWeight, classLogProbsBeforeSoftmax)

Modification du modèle

Autre

  • Fail (what)
  • IsSameObject (a, b)
  • Trace (node, say='', logFrequency=traceFrequency, logFirst=10, logGradientToo=false, onlyUpToRow=100000000, onlyUpToT=100000000, format=[])

Obsolescent

  • ErrorPrediction (labels, nonNormalizedLogClassPosteriors)
  • ColumnElementTimes (...) = ElementTimes (...)
  • DiagTimes (...) = ElementTimes (...)
  • LearnableParameter(...) = Parameter(...)
  • LookupTable (embeddingMatrix, inputTensor)
  • RowRepeat (input, numRepeats)
  • RowSlice (beginIndex, numRows, input) = Slice(beginIndex, beginIndex + numRows, input, axis = 1)
  • RowStack (inputs)
  • RowElementTimes (...) = ElementTimes (...)
  • Scale (...) = ElementTimes (...)
  • ConstantTensor (scalarVal, shape)
    Parameter (outputDim, inputDim, ...) = ParameterTensor ((outputDim:input), ...)
    WeightParam (outputDim, inputDim) = Parameter (outputDim, inputDim, init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    DiagWeightParam (outputDim) = ParameterTensor ((outputDim), init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    BiasParam (dim) = ParameterTensor ((dim), init='fixedValue', value=0.0)
    ScalarParam() = BiasParam (1)
  • SparseInput (shape, dynamicAxis='', tag='feature')
    ImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
    SparseImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
  • MeanVarNorm(feat) = PerDimMeanVarNormalization(feat, Mean (feat), InvStdDev (feat))
    PerDimMeanVarNormalization (x, mean, invStdDev),
    PerDimMeanVarDeNormalization (x, mean, invStdDev)
  • ReconcileDynamicAxis (dataInput, layoutInput)