binomial_distribution, classe
Génère une distribution binomiale.
template<class IntType = int> class binomial_distribution { public: // types typedef IntType result_type; struct param_type; // constructors and reset functions explicit binomial_distribution(IntType t = 1, double p = 0.5); explicit binomial_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& gen); template<class URNG> result_type operator()(URNG& gen, const param_type& parm); // property functions IntType t() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
Paramètres
- IntType
Le type des résultats entiers est int par défaut. Pour plus d'informations sur les types possibles, voir <random>.
Notes
La classe de modèle décrit une distribution qui produit des valeurs d'un type intégral spécifié par l'utilisateur, ou du type int si aucun n'est fourni, distribuées selon la fonction de probabilité discrète de distribution binomiale. Le tableau suivant contient des liens vers des articles sur différents membres.
binomial_distribution::t |
binomial_distribution::param |
|
binomial_distribution::operator() |
binomial_distribution::p |
Les membres de propriétés t() et p() retournent les valeurs des paramètres de distribution stockés actuellement t et p, respectivement.
Pour plus d'informations sur les classes de distribution et leurs membres, voir <random>.
Pour plus d'informations sur la fonction de probabilité discrète de distribution binomiale, voir l'article de Wolfram MathWorld Binomial Distribution.
Exemple
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const int t, const double p, const int& s) {
// uncomment to use a non-deterministic seed
// std::random_device rd;
// std::mt19937 gen(rd());
std::mt19937 gen(1729);
std::binomial_distribution<> distr(t, p);
std::cout << std::endl;
std::cout << "p == " << distr.p() << std::endl;
std::cout << "t == " << distr.t() << std::endl;
// generate the distribution as a histogram
std::map<int, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Histogram for " << s << " samples:" << std::endl;
for (const auto& elem : histogram) {
std::cout << std::setw(5) << elem.first << ' ' << std::string(elem.second, ':') << std::endl;
}
std::cout << std::endl;
}
int main()
{
int t_dist = 1;
double p_dist = 0.5;
int samples = 100;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter an integer value for t distribution (where 0 <= t): ";
std::cin >> t_dist;
std::cout << "Enter a double value for p distribution (where 0.0 <= p <= 1.0): ";
std::cin >> p_dist;
std::cout << "Enter an integer value for a sample count: ";
std::cin >> samples;
test(t_dist, p_dist, samples);
}
Sortie
Première exécution :
Use CTRL-Z to bypass data entry and run using default values.
Enter an integer value for t distribution (where 0 <= t): 22
Enter a double value for p distribution (where 0.0 <= p <= 1.0): .25
Enter an integer value for a sample count: 100
p == 0.25
t == 22
Histogram for 100 samples:
1 :
2 ::
3 :::::::::::::
4 ::::::::::::::
5 :::::::::::::::::::::::::
6 ::::::::::::::::::
7 :::::::::::::
8 ::::::
9 ::::::
11 :
12 :
Deuxième exécution :
Use CTRL-Z to bypass data entry and run using default values.
Enter an integer value for t distribution (where 0 <= t): 22
Enter a double value for p distribution (where 0.0 <= p <= 1.0): .5
Enter an integer value for a sample count: 100
p == 0.5
t == 22
Histogram for 100 samples:
6 :
7 ::
8 :::::::::
9 ::::::::::
10 ::::::::::::::::
11 :::::::::::::::::::
12 :::::::::::
13 :::::::::::::
14 :::::::::::::::
15 ::
16 ::
Troisième exécution :
Use CTRL-Z to bypass data entry and run using default values.
Enter an integer value for t distribution (where 0 <= t): 22
Enter a double value for p distribution (where 0.0 <= p <= 1.0): .75
Enter an integer value for a sample count: 100
p == 0.75
t == 22
Histogram for 100 samples:
13 ::::
14 :::::::::::
15 :::::::::::::::
16 :::::::::::::::::::::
17 ::::::::::::::
18 :::::::::::::::::
19 :::::::::::
20 ::::::
21 :
Configuration requise
En-tête : <random>
Espace de noms : std