Utilisation du connecteur Flink/Delta
Important
Azure HDInsight sur AKS a été mis hors service le 31 janvier 2025. En savoir plus grâce à cette annonce.
Vous devez migrer vos charges de travail vers Microsoft Fabric ou un produit Azure équivalent pour éviter l’arrêt brusque de vos charges de travail.
Important
Cette fonctionnalité est actuellement en préversion. Les Conditions d’utilisation supplémentaires pour les préversions Microsoft Azure incluent des termes juridiques supplémentaires qui s’appliquent aux fonctionnalités Azure en version bêta, en préversion ou qui ne sont pas encore publiées en disponibilité générale. Pour plus d’informations sur cette préversion spécifique, consultez informations sur Azure HDInsight sur AKS en préversion. Pour des questions ou des suggestions de fonctionnalités, envoyez une demande sur AskHDInsight avec les détails et suivez-nous pour plus de mises à jour sur Communauté Azure HDInsight.
En utilisant Apache Flink et Delta Lake ensemble, vous pouvez créer une architecture data lakehouse fiable et évolutive. Le connecteur Flink/Delta vous permet d’écrire des données dans des tables Delta avec les transactions ACID et un traitement exactement une fois. Cela signifie que vos flux de données sont cohérents et sans erreur, même si vous redémarrez votre pipeline Flink à partir d’un point de contrôle. Le connecteur Flink/Delta garantit que vos données ne sont pas perdues ou dupliquées, et qu’elles correspondent à la sémantique Flink.
Dans cet article, vous allez apprendre à utiliser le connecteur Flink-Delta.
- Lisez les données de la table delta.
- Écrivez les données dans une table delta.
- Interrogez-le dans Power BI.
Présentation du connecteur Flink/Delta
Flink/Delta Connector est une bibliothèque JVM pour lire et écrire des données à partir d’applications Apache Flink vers des tables Delta utilisant la bibliothèque JVM autonome Delta. Le connecteur fournit exactement une fois les garanties de remise.
Flink/Delta Connector inclut :
DeltaSink pour écrire des données d’Apache Flink vers une table Delta. DeltaSource pour lire des tables Delta à l’aide d’Apache Flink.
Apache Flink-Delta Connector inclut :
Selon la version du connecteur, vous pouvez l’utiliser avec les versions Apache Flink suivantes :
Connector's version Flink's version
0.4.x (Sink Only) 1.12.0 <= X <= 1.14.5
0.5.0 1.13.0 <= X <= 1.13.6
0.6.0 X >= 1.15.3
0.7.0 X >= 1.16.1 --- We use this in Flink 1.17.0
Conditions préalables
- Cluster HDInsight Flink 1.17.0 sur AKS
- Connecteur Flink-Delta 0.7.0
- Utiliser MSI pour accéder à ADLS Gen2
- IntelliJ pour le développement
Lire des données à partir d’une table delta
La source Delta peut fonctionner dans l’un des deux modes décrits comme suit.
Mode limité adapté aux travaux par lots, où nous voulons lire le contenu de la table Delta uniquement pour une version spécifique de la table. Créez une source de ce mode à l’aide de l’API DeltaSource.forBoundedRowData.
Mode continu adapté aux travaux de diffusion en continu, où nous voulons vérifier en permanence la table Delta pour les nouvelles modifications et versions. Créez une source de ce mode à l’aide de l’API DeltaSource.forContinuousRowData.
Exemple : Création de source pour la table Delta, pour lire toutes les colonnes en mode limité. Convient pour les travaux par lots. Cet exemple charge la dernière version de la table.
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.data.RowData;
import org.apache.hadoop.conf.Configuration;
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// Define the source Delta table path
String deltaTablePath_source = "abfss://container@account_name.dfs.core.windows.net/data/testdelta";
// Create a bounded Delta source for all columns
DataStream<RowData> deltaStream = createBoundedDeltaSourceAllColumns(env, deltaTablePath_source);
public static DataStream<RowData> createBoundedDeltaSourceAllColumns(
StreamExecutionEnvironment env,
String deltaTablePath) {
DeltaSource<RowData> deltaSource = DeltaSource
.forBoundedRowData(
new Path(deltaTablePath),
new Configuration())
.build();
return env.fromSource(deltaSource, WatermarkStrategy.noWatermarks(), "delta-source");
}
Écriture dans le puits Delta
Delta Sink expose actuellement les métriques Flink suivantes :
Création d’un récepteur pour les tables nonpartitionées
Dans cet exemple, nous montrons comment créer un DeltaSink et le brancher à un org.apache.flink.streaming.api.datastream.DataStream
existant.
import io.delta.flink.sink.DeltaSink;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.types.logical.RowType;
import org.apache.hadoop.conf.Configuration;
// Define the sink Delta table path
String deltaTablePath_sink = "abfss://container@account_name.dfs.core.windows.net/data/testdelta_output";
// Define the source Delta table path
RowType rowType = RowType.of(
DataTypes.STRING().getLogicalType(), // Date
DataTypes.STRING().getLogicalType(), // Time
DataTypes.STRING().getLogicalType(), // TargetTemp
DataTypes.STRING().getLogicalType(), // ActualTemp
DataTypes.STRING().getLogicalType(), // System
DataTypes.STRING().getLogicalType(), // SystemAge
DataTypes.STRING().getLogicalType() // BuildingID
);
createDeltaSink(deltaStream, deltaTablePath_sink, rowType);
public static DataStream<RowData> createDeltaSink(
DataStream<RowData> stream,
String deltaTablePath,
RowType rowType) {
DeltaSink<RowData> deltaSink = DeltaSink
.forRowData(
new Path(deltaTablePath),
new Configuration(),
rowType)
.build();
stream.sinkTo(deltaSink);
return stream;
}
Code complet
Lecture des données d'une table delta et écriture vers une autre table delta.
package contoso.example;
import io.delta.flink.sink.DeltaSink;
import io.delta.flink.source.DeltaSource;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.types.logical.RowType;
import org.apache.hadoop.conf.Configuration;
public class DeltaSourceExample {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// Define the sink Delta table path
String deltaTablePath_sink = "abfss://container@account_name.dfs.core.windows.net/data/testdelta_output";
// Define the source Delta table path
String deltaTablePath_source = "abfss://container@account_name.dfs.core.windows.net/data/testdelta";
// Define the source Delta table path
RowType rowType = RowType.of(
DataTypes.STRING().getLogicalType(), // Date
DataTypes.STRING().getLogicalType(), // Time
DataTypes.STRING().getLogicalType(), // TargetTemp
DataTypes.STRING().getLogicalType(), // ActualTemp
DataTypes.STRING().getLogicalType(), // System
DataTypes.STRING().getLogicalType(), // SystemAge
DataTypes.STRING().getLogicalType() // BuildingID
);
// Create a bounded Delta source for all columns
DataStream<RowData> deltaStream = createBoundedDeltaSourceAllColumns(env, deltaTablePath_source);
createDeltaSink(deltaStream, deltaTablePath_sink, rowType);
// Execute the Flink job
env.execute("Delta datasource and sink Example");
}
public static DataStream<RowData> createBoundedDeltaSourceAllColumns(
StreamExecutionEnvironment env,
String deltaTablePath) {
DeltaSource<RowData> deltaSource = DeltaSource
.forBoundedRowData(
new Path(deltaTablePath),
new Configuration())
.build();
return env.fromSource(deltaSource, WatermarkStrategy.noWatermarks(), "delta-source");
}
public static DataStream<RowData> createDeltaSink(
DataStream<RowData> stream,
String deltaTablePath,
RowType rowType) {
DeltaSink<RowData> deltaSink = DeltaSink
.forRowData(
new Path(deltaTablePath),
new Configuration(),
rowType)
.build();
stream.sinkTo(deltaSink);
return stream;
}
}
Maven Pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>contoso.example</groupId>
<artifactId>FlinkDeltaDemo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<flink.version>1.17.0</flink.version>
<java.version>1.8</java.version>
<scala.binary.version>2.12</scala.binary.version>
<hadoop-version>3.3.4</hadoop-version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>io.delta</groupId>
<artifactId>delta-standalone_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>io.delta</groupId>
<artifactId>delta-flink</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-parquet</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop-version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-runtime</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Empaqueter le fichier jar et le soumettre au cluster Flink à exécuter
Transmettez les informations du fichier jar de la tâche dans le cluster AppMode.
Remarque
Activez toujours
hadoop.classpath.enable
lors de la lecture/écriture dans ADLS.Soumettez le cluster, et vous devriez être en mesure de voir la tâche dans l’interface utilisateur Flink.
Recherchez les résultats dans ADLS.
Intégration de Power BI
Une fois que les données se trouvent dans le récepteur delta, vous pouvez exécuter la requête dans Power BI Desktop et créer un rapport.
Ouvrez Power BI Desktop pour obtenir les données à l’aide du connecteur ADLS Gen2.
URL du compte de stockage.
Créez une requête M pour la source et appelez la fonction, qui interroge les données à partir du compte de stockage.
Une fois les données facilement disponibles, vous pouvez créer des rapports.
Références
- Apache, Apache Flink, Flink et les noms de projets open source associés sont marques déposées de la Apache Software Foundation (ASF).