cosh
Renvoie le cosinus hyperbolique d'un nombre complexe.
template<class Type>
complex<Type> cosh(
const complex<Type>& _ComplexNum
);
Paramètres
- _ComplexNum
Le nombre complexe dont le cosinus hyperbolique est déterminé.
Valeur de retour
Le nombre complexe qui est le cosinus hyperbolique du nombre complexe d'entrée.
Notes
Définition des identités cosinus hyperboliques complexes :
cos (z) = (1/2)*( exp (z) + exp (-z) )
cos (z) = cosh (a + bi) = cosh (a) cos (b) + isinh (a) sin (b)
Exemple
// complex_cosh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = cosh ( c1 );
cout << "Complex number c2 = cosh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic cosines of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar (1.0, pi / 6) );
v1.push_back( cosh ( vc1 ) );
complex <double> vc2 ( polar (1.0, pi / 3) );
v1.push_back( cosh ( vc2 ) );
complex <double> vc3 ( polar (1.0, pi / 2) );
v1.push_back( cosh ( vc3) );
complex <double> vc4 ( polar (1.0, 2 * pi / 3) );
v1.push_back( cosh ( vc4 ) );
complex <double> vc5 ( polar (1.0, 5 * pi / 6) );
v1.push_back( cosh ( vc5 ) );
complex <double> vc6 ( polar (1.0, pi ) );
v1.push_back( cosh ( vc6 ) );
cout << "The complex components cosh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Configuration requise
**En-tête :**complexe <de >
Espace de noms : std