operator!= (<complex>)
Teste l'inégalité entre deux nombres complexes, de grandes ou qui peut appartenir au sous-ensemble du type des true et imaginaires parties.
template<class Type>
bool operator!=(
const complex<Type>& _Left,
const complex<Type>& _Right
);
template<class Type>
bool operator!=(
const complex<Type>& _Left,
const Type& _Right
);
template<class Type>
bool operator!=(
const Type& _Left,
const complex<Type>& _Right
);
Paramètres
_Left
Un nombre complexe ou un objet de type de paramètre à pour tester l'inégalité._Right
Un nombre complexe ou un objet de type de paramètre à pour tester l'inégalité.
Valeur de retour
true si les nombres sont différents ; false si les nombres sont égaux.
Notes
Deux nombres complexes sont égaux si et seulement si leurs parties actives sont égaux et leurs pièces imaginaires sont égales. Sinon, ils sont inégaux.
L'opération est surchargé afin que les tests de comparaison peuvent être exécutés sans conversion des données dans un format spécifique.
Exemple
// complex_op_NE.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> compared with type complex<double>
complex <double> cl1 ( polar (3.0 , pi / 6 ) );
complex <double> cr1a ( polar (3.0 , pi /6 ) );
complex <double> cr1b ( polar (2.0 , pi / 3 ) );
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The 1st right-side complex number is cr1a = " << cr1a << endl;
cout << "The 2nd right-side complex number is cr1b = " << cr1b << endl;
if ( cl1 != cr1a )
cout << "The complex numbers cl1 & cr1a are not equal." << endl;
else
cout << "The complex numbers cl1 & cr1a are equal." << endl;
if ( cl1 != cr1b )
cout << "The complex numbers cl1 & cr1b are not equal." << endl;
else
cout << "The complex numbers cl1 & cr1b are equal." << endl;
cout << endl;
// Example of the second member function
// type complex<int> compared with type int
complex <int> cl2a ( 3 , 4 );
complex <int> cl2b ( 5 ,0 );
int cr2a =3;
int cr2b =5;
cout << "The 1st left-side complex number is cl2a = " << cl2a << endl;
cout << "The 1st right-side complex number is cr2a = " << cr2a << endl;
if ( cl2a != cr2a )
cout << "The complex numbers cl2a & cr2a are not equal." << endl;
else
cout << "The complex numbers cl2a & cr2a are equal." << endl;
cout << "The 2nd left-side complex number is cl2b = " << cl2b << endl;
cout << "The 2nd right-side complex number is cr2b = " << cr2b << endl;
if ( cl2b != cr2b )
cout << "The complex numbers cl2b & cr2b are not equal." << endl;
else
cout << "The complex numbers cl2b & cr2b are equal." << endl;
cout << endl;
// Example of the third member function
// type double compared with type complex<double>
double cl3a =3;
double cl3b =5;
complex <double> cr3a ( 3 , 4 );
complex <double> cr3b ( 5 ,0 );
cout << "The 1st left-side complex number is cl3a = " << cl3a << endl;
cout << "The 1st right-side complex number is cr3a = " << cr3a << endl;
if ( cl3a != cr3a )
cout << "The complex numbers cl3a & cr3a are not equal." << endl;
else
cout << "The complex numbers cl3a & cr3a are equal." << endl;
cout << "The 2nd left-side complex number is cl3b = " << cl3b << endl;
cout << "The 2nd right-side complex number is cr3b = " << cr3b << endl;
if ( cl3b != cr3b )
cout << "The complex numbers cl3b & cr3b are not equal." << endl;
else
cout << "The complex numbers cl3b & cr3b are equal." << endl;
cout << endl;
}
Configuration requise
**En-tête :**complexe <de >
Espace de noms : std