sinh
Renvoie le sinus d'un nombre complexe.
template<class Type>
complex<Type> sinh(
const complex<Type>& _ComplexNum
);
Paramètres
- _ComplexNum
Le nombre complexe dont le sinus hyperbolique est déterminé.
Valeur de retour
Le nombre complexe qui est le sinus hyperbolique du nombre complexe d'entrée.
Notes
Identités définissant les sinus hyperboliques complexes :
sinh (z) = (1/2)*( exp (z) – exp (-z) )
sinh (z) = sinh (a + bi) = sinh (a) cos (b) + icosh (a) sin (b)
Exemple
// complex_sinh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of sine of a complex number c1
complex <double> c2 = sinh ( c1 );
cout << "Complex number c2 = sinh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic sines of the standard angles in
// the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( sinh ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( sinh ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( sinh ( vc3) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( sinh ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( sinh ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( sinh ( vc6 ) );
cout << "The complex components sinh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Configuration requise
En-tête :: <complexe>
Espace de noms : std