Former des modèles avec PyTorch dans Microsoft Fabric
Cet article décrit comment entraîner et suivre les itérations d’un modèle PyTorch. Le framework d'apprentissage automatique PyTorch est basé sur la bibliothèque Torch. PyTorch est souvent utilisé pour les applications de vision par ordinateur et de traitement du langage naturel.
Prérequis
Installez PyTorch et torchvision sur votre notebook. Vous pouvez installer ou mettre à niveau la version de ces bibliothèques sur votre environnement à l'aide de la commande suivante :
pip install torch torchvision
Configurer l'expérience d'apprentissage automatique
Vous pouvez créer une expérience d'apprentissage automatique à l'aide de l'API MLFLow. La fonction set_experiment()
de MLflow crée une nouvelle expérience Machine Learning nommée sample-pytorch, si elle n’existe pas déjà.
Pour créer l’expérience, exécutez le code suivant dans votre notebook :
import mlflow
mlflow.set_experiment("sample-pytorch")
Former et évaluer un modèle Pytorch
Après avoir configuré l’expérience, vous chargez le jeu de données Modified National Institute of Standards and Technology (MNIST). Vous générez les jeux de données de test et de formation, puis créez une fonction de formation.
Exécutez le code suivant dans votre notebook et formez le modèle Pytorch :
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.optim as optim
# Load the MNIST dataset
root = "/tmp/mnist"
if not os.path.exists(root):
os.mkdir(root)
trans = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]
)
# If the data doesn't exist, download the MNIST dataset
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True)
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True)
batch_size = 100
train_loader = torch.utils.data.DataLoader(
dataset=train_set, batch_size=batch_size, shuffle=True
)
test_loader = torch.utils.data.DataLoader(
dataset=test_set, batch_size=batch_size, shuffle=False
)
print("==>>> total trainning batch number: {}".format(len(train_loader)))
print("==>>> total testing batch number: {}".format(len(test_loader)))
# Define the network
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4 * 4 * 50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def name(self):
return "LeNet"
# Train the model
model = LeNet()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion = nn.CrossEntropyLoss()
for epoch in range(1):
# Model training
ave_loss = 0
for batch_idx, (x, target) in enumerate(train_loader):
optimizer.zero_grad()
x, target = Variable(x), Variable(target)
out = model(x)
loss = criterion(out, target)
ave_loss = (ave_loss * batch_idx + loss.item()) / (batch_idx + 1)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 100 == 0 or (batch_idx + 1) == len(train_loader):
print(
"==>>> epoch: {}, batch index: {}, train loss: {:.6f}".format(
epoch, batch_idx + 1, ave_loss
)
)
# Model testing
correct_cnt, total_cnt, ave_loss = 0, 0, 0
for batch_idx, (x, target) in enumerate(test_loader):
x, target = Variable(x, volatile=True), Variable(target, volatile=True)
out = model(x)
loss = criterion(out, target)
_, pred_label = torch.max(out.data, 1)
total_cnt += x.data.size()[0]
correct_cnt += (pred_label == target.data).sum()
ave_loss = (ave_loss * batch_idx + loss.item()) / (batch_idx + 1)
if (batch_idx + 1) % 100 == 0 or (batch_idx + 1) == len(test_loader):
print(
"==>>> epoch: {}, batch index: {}, test loss: {:.6f}, acc: {:.3f}".format(
epoch, batch_idx + 1, ave_loss, correct_cnt * 1.0 / total_cnt
)
)
torch.save(model.state_dict(), model.name())
Modèle de journal avec MLflow
La prochaine tâche démarre une exécution MLflow et suit les résultats dans l’expérience d'apprentissage automatique. L’exemple de code crée un nouveau modèle nommé sample-pytorch. Il crée une exécution avec les paramètres spécifiés et enregistre l'exécution dans l'expérience sample-pytorch.
Exécutez la cellule suivante dans votre notebook et consignez le modèle :
with mlflow.start_run() as run:
print("log pytorch model:")
mlflow.pytorch.log_model(
model, "pytorch-model", registered_model_name="sample-pytorch"
)
model_uri = "runs:/{}/pytorch-model".format(run.info.run_id)
print("Model saved in run %s" % run.info.run_id)
print(f"Model URI: {model_uri}")
Charger et évaluer le modèle
Une fois le modèle enregistré, vous pouvez le charger pour l'inférence.
Exécutez le code suivant dans votre notebook, puis chargez le modèle pour l’inférence :
# Inference with loading the logged model
loaded_model = mlflow.pytorch.load_model(model_uri)
print(type(loaded_model))
correct_cnt, total_cnt, ave_loss = 0, 0, 0
for batch_idx, (x, target) in enumerate(test_loader):
x, target = Variable(x, volatile=True), Variable(target, volatile=True)
out = loaded_model(x)
loss = criterion(out, target)
_, pred_label = torch.max(out.data, 1)
total_cnt += x.data.size()[0]
correct_cnt += (pred_label == target.data).sum()
ave_loss = (ave_loss * batch_idx + loss.item()) / (batch_idx + 1)
if (batch_idx + 1) % 100 == 0 or (batch_idx + 1) == len(test_loader):
print(
"==>>> epoch: {}, batch index: {}, test loss: {:.6f}, acc: {:.3f}".format(
epoch, batch_idx + 1, ave_loss, correct_cnt * 1.0 / total_cnt
)
)
Contenu connexe
- Explorer les modèles Machine Learning
- Créer des expériences Azure Machine Learning