OnlineGradientDescentTrainer Classe
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Pour IEstimator<TTransformer> entraîner un modèle de régression linéaire à l’aide d’OGD (Online Gradient Descent) pour estimer les paramètres du modèle de régression linéaire.
public sealed class OnlineGradientDescentTrainer : Microsoft.ML.Trainers.AveragedLinearTrainer<Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.LinearRegressionModelParameters>,Microsoft.ML.Trainers.LinearRegressionModelParameters>
type OnlineGradientDescentTrainer = class
inherit AveragedLinearTrainer<RegressionPredictionTransformer<LinearRegressionModelParameters>, LinearRegressionModelParameters>
Public NotInheritable Class OnlineGradientDescentTrainer
Inherits AveragedLinearTrainer(Of RegressionPredictionTransformer(Of LinearRegressionModelParameters), LinearRegressionModelParameters)
- Héritage
Remarques
Pour créer ce formateur, utilisez OnlineGradientDescent ou OnlineGradientDescent(Options).
Colonnes d’entrée et de sortie
Les données de la colonne d’étiquettes d’entrée doivent être Single. Les données de colonne des caractéristiques d’entrée doivent être un vecteur de taille connue de Single.
Ce formateur génère les colonnes suivantes :
Nom de colonne de sortie | Type de colonne | Description |
---|---|---|
Score |
Single | Score non lié prédit par le modèle. |
Caractéristiques de l’entraîneur
Tâche d’apprentissage automatique | régression ; |
La normalisation est-elle requise ? | Oui |
La mise en cache est-elle requise ? | Non |
NuGet requis en plus de Microsoft.ML | Aucun |
Exportable vers ONNX | Oui |
Détails de l’algorithme d’apprentissage
La descente de dégradé stochastique utilise une technique itérative simple et efficace pour ajuster les coefficients de modèle à l’aide de dégradés d’erreur pour les fonctions de perte convex. La descente de dégradé en ligne (OGD) implémente la descente de dégradé stochastique standard (non batch), avec un choix de fonctions de perte et une option permettant de mettre à jour le vecteur de poids à l’aide de la moyenne des vecteurs vus au fil du temps (l’argument moyen est défini sur True par défaut).
Consultez la section Voir également pour obtenir des liens vers des exemples d’utilisation.
Champs
FeatureColumn |
Colonne de caractéristique attendue par l’entraîneur. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Colonne d’étiquette attendue par le formateur. Peut être |
WeightColumn |
Colonne de poids attendue par l’entraîneur. Peut être |
Propriétés
Info |
Pour IEstimator<TTransformer> entraîner un modèle de régression linéaire à l’aide d’OGD (Online Gradient Descent) pour estimer les paramètres du modèle de régression linéaire. (Hérité de OnlineLinearTrainer<TTransformer,TModel>) |
Méthodes
Fit(IDataView, LinearModelParameters) |
Poursuit la formation d’un OnlineLinearTrainer<TTransformer,TModel> utilisateur déjà formé |
Fit(IDataView) |
Entraîne et retourne un ITransformer. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Pour IEstimator<TTransformer> entraîner un modèle de régression linéaire à l’aide d’OGD (Online Gradient Descent) pour estimer les paramètres du modèle de régression linéaire. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
Méthodes d’extension
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Ajoutez un « point de contrôle de mise en cache » à la chaîne d’estimateur. Cela garantit que les estimateurs en aval seront entraînés par rapport aux données mises en cache. Il est utile d’avoir un point de contrôle de mise en cache avant les formateurs qui prennent plusieurs passes de données. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Étant donné un estimateur, retournez un objet de création de package de package qui appellera un délégué une fois Fit(IDataView) appelé. Il est souvent important pour un estimateur de retourner des informations sur ce qui a été adapté, c’est pourquoi la Fit(IDataView) méthode retourne un objet spécifiquement typé, plutôt que simplement un général ITransformer. Toutefois, en même temps, IEstimator<TTransformer> sont souvent formés en pipelines avec de nombreux objets. Nous pouvons donc avoir besoin de créer une chaîne d’estimateurs via EstimatorChain<TLastTransformer> laquelle l’estimateur pour lequel nous voulons obtenir le transformateur est enterré quelque part dans cette chaîne. Pour ce scénario, nous pouvons par le biais de cette méthode attacher un délégué qui sera appelé une fois l’ajustement appelé. |