Partager via


OnlineGradientDescentTrainer Classe

Définition

Pour IEstimator<TTransformer> entraîner un modèle de régression linéaire à l’aide d’OGD (Online Gradient Descent) pour estimer les paramètres du modèle de régression linéaire.

public sealed class OnlineGradientDescentTrainer : Microsoft.ML.Trainers.AveragedLinearTrainer<Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.LinearRegressionModelParameters>,Microsoft.ML.Trainers.LinearRegressionModelParameters>
type OnlineGradientDescentTrainer = class
    inherit AveragedLinearTrainer<RegressionPredictionTransformer<LinearRegressionModelParameters>, LinearRegressionModelParameters>
Public NotInheritable Class OnlineGradientDescentTrainer
Inherits AveragedLinearTrainer(Of RegressionPredictionTransformer(Of LinearRegressionModelParameters), LinearRegressionModelParameters)
Héritage

Remarques

Pour créer ce formateur, utilisez OnlineGradientDescent ou OnlineGradientDescent(Options).

Colonnes d’entrée et de sortie

Les données de la colonne d’étiquettes d’entrée doivent être Single. Les données de colonne des caractéristiques d’entrée doivent être un vecteur de taille connue de Single.

Ce formateur génère les colonnes suivantes :

Nom de colonne de sortie Type de colonne Description
Score Single Score non lié prédit par le modèle.

Caractéristiques de l’entraîneur

Tâche d’apprentissage automatique régression ;
La normalisation est-elle requise ? Oui
La mise en cache est-elle requise ? Non
NuGet requis en plus de Microsoft.ML Aucun
Exportable vers ONNX Oui

Détails de l’algorithme d’apprentissage

La descente de dégradé stochastique utilise une technique itérative simple et efficace pour ajuster les coefficients de modèle à l’aide de dégradés d’erreur pour les fonctions de perte convex. La descente de dégradé en ligne (OGD) implémente la descente de dégradé stochastique standard (non batch), avec un choix de fonctions de perte et une option permettant de mettre à jour le vecteur de poids à l’aide de la moyenne des vecteurs vus au fil du temps (l’argument moyen est défini sur True par défaut).

Consultez la section Voir également pour obtenir des liens vers des exemples d’utilisation.

Champs

FeatureColumn

Colonne de caractéristique attendue par l’entraîneur.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Colonne d’étiquette attendue par le formateur. Peut être null, ce qui indique que l’étiquette n’est pas utilisée pour l’entraînement.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Colonne de poids attendue par l’entraîneur. Peut être null, ce qui indique que le poids n’est pas utilisé pour l’entraînement.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)

Propriétés

Info

Pour IEstimator<TTransformer> entraîner un modèle de régression linéaire à l’aide d’OGD (Online Gradient Descent) pour estimer les paramètres du modèle de régression linéaire.

(Hérité de OnlineLinearTrainer<TTransformer,TModel>)

Méthodes

Fit(IDataView, LinearModelParameters)

Poursuit la formation d’un OnlineLinearTrainer<TTransformer,TModel> utilisateur déjà formé modelParameters et retourne un ITransformer.

(Hérité de OnlineLinearTrainer<TTransformer,TModel>)
Fit(IDataView)

Entraîne et retourne un ITransformer.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Pour IEstimator<TTransformer> entraîner un modèle de régression linéaire à l’aide d’OGD (Online Gradient Descent) pour estimer les paramètres du modèle de régression linéaire.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)

Méthodes d’extension

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Ajoutez un « point de contrôle de mise en cache » à la chaîne d’estimateur. Cela garantit que les estimateurs en aval seront entraînés par rapport aux données mises en cache. Il est utile d’avoir un point de contrôle de mise en cache avant les formateurs qui prennent plusieurs passes de données.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Étant donné un estimateur, retournez un objet de création de package de package qui appellera un délégué une fois Fit(IDataView) appelé. Il est souvent important pour un estimateur de retourner des informations sur ce qui a été adapté, c’est pourquoi la Fit(IDataView) méthode retourne un objet spécifiquement typé, plutôt que simplement un général ITransformer. Toutefois, en même temps, IEstimator<TTransformer> sont souvent formés en pipelines avec de nombreux objets. Nous pouvons donc avoir besoin de créer une chaîne d’estimateurs via EstimatorChain<TLastTransformer> laquelle l’estimateur pour lequel nous voulons obtenir le transformateur est enterré quelque part dans cette chaîne. Pour ce scénario, nous pouvons par le biais de cette méthode attacher un délégué qui sera appelé une fois l’ajustement appelé.

S’applique à

Voir aussi