Partager via


FastForestRegressionTrainer.Options Classe

Définition

Options pour le FastForestRegressionTrainer tel qu’utilisé dans FastForest(Options).

public sealed class FastForestRegressionTrainer.Options : Microsoft.ML.Trainers.FastTree.FastForestOptionsBase
type FastForestRegressionTrainer.Options = class
    inherit FastForestOptionsBase
Public NotInheritable Class FastForestRegressionTrainer.Options
Inherits FastForestOptionsBase
Héritage

Constructeurs

FastForestRegressionTrainer.Options()

Options pour le FastForestRegressionTrainer tel qu’utilisé dans FastForest(Options).

Champs

AllowEmptyTrees

Lorsqu’un fractionnement racine est impossible, autorisez l’entraînement à continuer.

(Hérité de TreeOptions)
BaggingExampleFraction

Pourcentage d’exemples d’entraînement utilisés dans chaque sac. La valeur par défaut est 0,7 (70 %).

(Hérité de TreeOptions)
BaggingSize

Nombre d’arborescences dans chaque sac (0 pour désactiver l’ensachage).

(Hérité de TreeOptions)
Bias

Biais pour le calcul du gradient pour chaque compartiment de caractéristiques pour une fonctionnalité catégorielle.

(Hérité de TreeOptions)
Bundling

Regrouper des bacs à faible population. Bundle.None(0) : aucun regroupement, Bundle.AggregateLowPopulation(1) : Bundle low population, Bundle.Adjacent(2) : lot de population faible voisin.

(Hérité de TreeOptions)
CategoricalSplit

Indique s’il faut effectuer un fractionnement en fonction de plusieurs valeurs de caractéristiques catégorielles.

(Hérité de TreeOptions)
CompressEnsemble

Compressez l’ensemble de l’arborescence.

(Hérité de TreeOptions)
DiskTranspose

Indique s’il faut utiliser le disque ou les installations de transposition natives des données (le cas échéant) lors de l’exécution de la transpose.

(Hérité de TreeOptions)
EntropyCoefficient

Coefficient d’entropie (régularisation) compris entre 0 et 1.

(Hérité de TreeOptions)
ExampleWeightColumnName

Colonne à utiliser pour l’exemple de poids.

(Hérité de TrainerInputBaseWithWeight)
ExecutionTime

Imprimer la répartition du temps d’exécution sur ML.NET canal.

(Hérité de TreeOptions)
FeatureColumnName

Colonne à utiliser pour les fonctionnalités.

(Hérité de TrainerInputBase)
FeatureFirstUsePenalty

La caractéristique utilise tout d’abord le coefficient de pénalité.

(Hérité de TreeOptions)
FeatureFlocks

Indique s’il faut collecter des fonctionnalités pendant la préparation du jeu de données pour accélérer l’entraînement.

(Hérité de TreeOptions)
FeatureFraction

Fraction de fonctionnalités (choisies de manière aléatoire) à utiliser sur chaque itération. Utilisez 0,9 si seulement 90 % des fonctionnalités sont nécessaires. Des nombres inférieurs permettent de réduire le surajustement.

(Hérité de TreeOptions)
FeatureFractionPerSplit

Fraction des fonctionnalités (choisies de manière aléatoire) à utiliser sur chaque fractionnement. Si sa valeur est 0,9, 90 % de toutes les fonctionnalités seraient supprimées dans l’attente.

(Hérité de TreeOptions)
FeatureReusePenalty

Coefficient de pénalité de réutilisation (régularisation) de la fonctionnalité.

(Hérité de TreeOptions)
FeatureSelectionSeed

Valeur initiale de la sélection de fonctionnalité active.

(Hérité de TreeOptions)
GainConfidenceLevel

L’ajustement d’arborescence gagne en confiance. Considérez un gain uniquement si sa probabilité par rapport à un gain de choix aléatoire est supérieure à cette valeur.

(Hérité de TreeOptions)
HistogramPoolSize

Nombre d’histogrammes dans le pool (entre 2 et numLeaves).

(Hérité de TreeOptions)
LabelColumnName

Colonne à utiliser pour les étiquettes.

(Hérité de TrainerInputBaseWithLabel)
MaximumBinCountPerFeature

Nombre maximal de valeurs distinctes (emplacements) par caractéristique.

(Hérité de TreeOptions)
MaximumCategoricalGroupCountPerNode

Nombre maximal de groupes de fractionnements catégoriels à prendre en compte lors du fractionnement sur une fonctionnalité catégorielle. Les groupes fractionnés sont une collection de points de fractionnement. Cela permet de réduire le surajustement lorsqu’il existe de nombreuses fonctionnalités catégorielles.

(Hérité de TreeOptions)
MaximumCategoricalSplitPointCount

Nombre maximal de points de fractionnement catégoriels à prendre en compte lors du fractionnement sur une fonctionnalité catégorielle.

(Hérité de TreeOptions)
MemoryStatistics

Imprimer les statistiques de mémoire sur ML.NET canal.

(Hérité de TreeOptions)
MinimumExampleCountPerLeaf

Nombre minimal de points de données requis pour former une nouvelle feuille d’arborescence.

(Hérité de TreeOptions)
MinimumExampleFractionForCategoricalSplit

Pourcentage minimal d’exemples catégoriels dans un bac à prendre en compte pour un fractionnement. La valeur par défaut est de 0,1 % de tous les exemples d’entraînement.

(Hérité de TreeOptions)
MinimumExamplesForCategoricalSplit

Nombre minimal d’exemples catégoriels dans un bac à prendre en compte pour un fractionnement.

(Hérité de TreeOptions)
NumberOfLeaves

Nombre maximal de feuilles dans chaque arborescence de régression.

(Hérité de TreeOptions)
NumberOfQuantileSamples

Nombre de points de données à échantillonner à partir de chaque feuille pour trouver la distribution des étiquettes.

(Hérité de FastForestOptionsBase)
NumberOfThreads

Nombre de threads à utiliser.

(Hérité de TreeOptions)
NumberOfTrees

Nombre total d’arbres de décision à créer dans l’ensemble.

(Hérité de TreeOptions)
RowGroupColumnName

Colonne à utiliser par exemple groupId.

(Hérité de TrainerInputBaseWithGroupId)
Seed

Valeur initiale du générateur de nombres aléatoires.

(Hérité de TreeOptions)
ShuffleLabels

Indique s’il faut mélanger les étiquettes à chaque itération.

Smoothing

Paramètre de lissage pour la régularisation de l’arborescence.

(Hérité de TreeOptions)
SoftmaxTemperature

Température de la distribution aléatoire softmax pour le choix de la fonctionnalité.

(Hérité de TreeOptions)
SparsifyThreshold

Niveau d’éparse nécessaire pour utiliser la représentation des fonctionnalités éparses.

(Hérité de TreeOptions)
TestFrequency

Calculez les valeurs de métriques pour l’apprentissage/la validité/le test chaque k rounds.

(Hérité de TreeOptions)

S’applique à