Partager via


FastForestRegressionFeaturizationEstimator Classe

Définition

pour IEstimator<TTransformer> transformer un vecteur de fonctionnalité d’entrée en fonctionnalités basées sur des arborescences.

public sealed class FastForestRegressionFeaturizationEstimator : Microsoft.ML.Trainers.FastTree.TreeEnsembleFeaturizationEstimatorBase
type FastForestRegressionFeaturizationEstimator = class
    inherit TreeEnsembleFeaturizationEstimatorBase
Public NotInheritable Class FastForestRegressionFeaturizationEstimator
Inherits TreeEnsembleFeaturizationEstimatorBase
Héritage
FastForestRegressionFeaturizationEstimator

Remarques

Colonnes d’entrée et de sortie

Les données de la colonne d’étiquettes d’entrée doivent être Single. Les données de colonne des fonctionnalités d’entrée doivent être un vecteur de taille connue de Single.

Cet estimateur génère les colonnes suivantes :

Nom de colonne de sortie Type de colonne Description
Trees Vecteur de taille connue de Single Valeurs de sortie de toutes les arborescences. Sa taille est identique au nombre total d’arbres dans le modèle d’ensemble d’arborescences.
Leaves Vecteur de taille connue de Single Représentation vectorielle 0-1 pour les ID de toutes les feuilles où le vecteur de fonctionnalité d’entrée tombe. Sa taille correspond au nombre total de feuilles dans le modèle d’ensemble d’arborescences.
Paths Vecteur de taille connue de Single Représentation vectorielle 0-1 pour les chemins d’accès que le vecteur de fonctionnalité d’entrée a transmis pour atteindre les feuilles. Sa taille correspond au nombre de nœuds non-feuilles dans le modèle d’ensemble d’arborescences.

Ces colonnes de sortie sont toutes facultatives et l’utilisateur peut modifier leurs noms. Définissez les noms des colonnes ignorées sur Null afin qu’elles ne soient pas produites.

Détails de la prédiction

Cet estimateur produit plusieurs colonnes de sortie à partir d’un modèle d’ensemble d’arborescences. Supposons que le modèle ne contient qu’un seul arbre de décision :

               Node 0
               /    \
             /        \
           /            \
         /                \
       Node 1            Node 2
       /    \            /    \
     /        \        /        \
   /            \     Leaf -3  Node 3
  Leaf -1      Leaf -2         /    \
                             /        \
                            Leaf -4  Leaf -5

Supposons que le vecteur de fonctionnalité d’entrée tombe dans Leaf -1. La sortie Trees peut être un vecteur à 1 élément où la seule valeur est la valeur de décision portée par Leaf -1. La sortie Leaves est un vecteur 0-1. Si la feuille atteinte est la $i$-th (indexée par $-(i+1)$ de sorte que la première feuille est Leaf -1) feuille dans l’arbre, la valeur $i$th dans Leaves est 1 et toutes les autres valeurs sont 0. La sortie Paths est une représentation 0-1 des nœuds passés avant d’atteindre la feuille. L’élément $i$-th dans Paths indique si le nœud $i$-th (indexé par $i$) est touché. Par exemple, atteindre Leaf -1 $[1, 1, 0, 0]$ comme .Paths S’il existe plusieurs arbres, cet estimateur concatène Treessimplement celui de LeavesPathstous les arbres (la première information de l’arbre arrive en premier dans les vecteurs concaténés).

Consultez la section Voir aussi pour obtenir des liens vers des exemples d’utilisation.

Méthodes

Fit(IDataView)

Produisez un TreeEnsembleModelParameters qui mappe la colonne appelée InputColumnName dans input à trois colonnes de sortie.

(Hérité de TreeEnsembleFeaturizationEstimatorBase)
GetOutputSchema(SchemaShape)

PretrainedTreeFeaturizationEstimator ajoute trois colonnes à vecteurs flottants dans inputSchema. Étant donné une colonne de vecteur de caractéristique, les colonnes ajoutées sont les valeurs de prédiction de toutes les arborescences, les ID de feuilles dans lesquelles le vecteur de caractéristique tombe et les chemins d’accès à ces feuilles.

(Hérité de TreeEnsembleFeaturizationEstimatorBase)

Méthodes d’extension

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Ajoutez un point de contrôle de mise en cache à la chaîne de l’estimateur. Cela garantit que les estimateurs en aval seront entraînés sur les données mises en cache. Il est utile d’avoir un point de contrôle de mise en cache avant les formateurs qui prennent plusieurs passes de données.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

À l’aide d’un estimateur, retournez un objet de wrapping qui appellera un délégué une fois Fit(IDataView) appelé. Il est souvent important pour un estimateur de retourner des informations sur ce qui était adapté, c’est pourquoi la Fit(IDataView) méthode retourne un objet typé spécifique, plutôt qu’un simple objet général ITransformer. Cependant, en même temps, IEstimator<TTransformer> sont souvent formés en pipelines avec de nombreux objets, nous devrons donc créer une chaîne d’estimateurs par l’intermédiaire EstimatorChain<TLastTransformer> de l’endroit où l’estimateur pour lequel nous voulons obtenir le transformateur est enfoui quelque part dans cette chaîne. Pour ce scénario, nous pouvons, par le biais de cette méthode, attacher un délégué qui sera appelé une fois l’ajustement appelé.

S’applique à

Voir aussi