ComputeLogisticRegressionStandardDeviation.ComputeStandardDeviation Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Calcule la matrice d’écart-type de chacun des poids d’entraînement non nuls, nécessaires pour calculer davantage l’écart-type, la valeur p et le z-Score. Les calculs ne font pas partie de Microsoft.ML package, en raison de la taille de MKL. Si vous avez besoin de ces calculs, ajoutez le package Microsoft.ML.Mkl.Components et initialisez ComputeStandardDeviation l’implémentation ComputeLogisticRegressionStandardDeviation dans le package Microsoft.ML.Mkl.Components. En raison de l’existence de la régularisation, une approximation est utilisée pour calculer les variances des coefficients linéaires entraînés.
public abstract Microsoft.ML.Data.VBuffer<float> ComputeStandardDeviation (double[] hessian, int[] weightIndices, int parametersCount, int currentWeightsCount, Microsoft.ML.Runtime.IChannel ch, float l2Weight);
abstract member ComputeStandardDeviation : double[] * int[] * int * int * Microsoft.ML.Runtime.IChannel * single -> Microsoft.ML.Data.VBuffer<single>
Public MustOverride Function ComputeStandardDeviation (hessian As Double(), weightIndices As Integer(), parametersCount As Integer, currentWeightsCount As Integer, ch As IChannel, l2Weight As Single) As VBuffer(Of Single)
Paramètres
- hessian
- Double[]
- weightIndices
- Int32[]
- parametersCount
- Int32
- currentWeightsCount
- Int32
- ch
- IChannel
- l2Weight
- Single