Partager via


NormalizationCatalog.NormalizeRobustScaling Méthode

Définition

Surcharges

NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32)

Créez un NormalizingEstimator, qui normalise à l’aide de statistiques robustes aux valeurs hors norme en centreant les données autour de 0 (en supprimant la médiane) et met à l’échelle les données en fonction de la plage quantile (par défaut à la plage interquartile).

NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32)

Créez un NormalizingEstimator, qui normalise à l’aide de statistiques robustes aux valeurs hors norme en centreant les données autour de 0 (en supprimant la médiane) et met à l’échelle les données en fonction de la plage quantile (par défaut à la plage interquartile).

NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32)

Créez un NormalizingEstimator, qui normalise à l’aide de statistiques robustes aux valeurs hors norme en centreant les données autour de 0 (en supprimant la médiane) et met à l’échelle les données en fonction de la plage quantile (par défaut à la plage interquartile).

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator

Paramètres

catalog
TransformsCatalog

Catalogue de transformations

columns
InputOutputColumnPair[]

Paires de colonnes d’entrée et de sortie. Les colonnes d’entrée doivent être de type Singlede données ou Double un vecteur de taille connue de ces types. Le type de données de la colonne de sortie sera identique à la colonne d’entrée associée.

maximumExampleCount
Int64

Nombre maximal d’exemples utilisés pour entraîner le normaliseur.

centerData
Boolean

Indique s’il faut centrer les données autour de 0 pour supprimer la médiane. La valeur par défaut est true.

quantileMin
UInt32

Quantile min utilisé pour mettre à l’échelle les données. La valeur par défaut est 25.

quantileMax
UInt32

Quantile max utilisé pour mettre à l’échelle les données. La valeur par défaut est 75.

Retours

Exemples

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeBinningMulticolumn
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Features2 = 1 },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 0},
                    Features2 = 4 },

                new DataPoint(){ Features = new float[4] { 4, 0, 1, 0},
                    Features2 = 1 },

                new DataPoint(){ Features = new float[4] { 2,-1,-1, 1},
                    Features2 = 2 }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeBinning normalizes the data by constructing equidensity bins
            // and produce output based on to which bin the original value belongs.
            var normalize = mlContext.Transforms.NormalizeBinning(new[]{
                new InputOutputColumnPair("Features"),
                new InputOutputColumnPair("Features2"),
                },
                maximumBinCount: 4, fixZero: false);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            var column2 = transformedData.GetColumn<float>("Features2").ToArray();

            for (int i = 0; i < column.Length; i++)
                Console.WriteLine(string.Join(", ", column[i].Select(x => x
                .ToString("f4"))) + "\t\t" + column2[i]);
            // Expected output:
            //
            //  Features                            Feature2
            //  1.0000, 0.6667, 1.0000, 0.0000          0
            //  0.6667, 1.0000, 0.6667, 0.0000          1
            //  0.3333, 0.3333, 0.3333, 0.0000          0
            //  0.0000, 0.0000, 0.0000, 1.0000          0.5
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public float Features2 { get; set; }
        }
    }
}

S’applique à

NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32)

Créez un NormalizingEstimator, qui normalise à l’aide de statistiques robustes aux valeurs hors norme en centreant les données autour de 0 (en supprimant la médiane) et met à l’échelle les données en fonction de la plage quantile (par défaut à la plage interquartile).

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator

Paramètres

catalog
TransformsCatalog

Catalogue de transformations

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Le type de données de cette colonne est identique à la colonne d’entrée.

inputColumnName
String

Nom de la colonne à transformer. Si la valeur est définie null, la valeur du outputColumnName fichier sera utilisée comme source. Le type de données de cette colonne doit être Single, Double ou un vecteur de taille connue de ces types.

maximumExampleCount
Int64

Nombre maximal d’exemples utilisés pour entraîner le normaliseur.

centerData
Boolean

Indique s’il faut centrer les données autour de 0 en supprimant la médiane. La valeur par défaut est true.

quantileMin
UInt32

Quantile min utilisé pour mettre à l’échelle les données. La valeur par défaut est 25.

quantileMax
UInt32

Quantile max utilisé pour mettre à l’échelle les données. La valeur par défaut est 75.

Retours

Exemples

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeSupervisedBinning
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Bin ="Bin1" },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 1},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 5, 3, 0, 2},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 4,-8, 1, 3},
                    Bin ="Bin3" },

                new DataPoint(){ Features = new float[4] { 2,-5,-1, 4},
                    Bin ="Bin3" }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // Let's transform "Bin" column from string to key.
            data = mlContext.Transforms.Conversion.MapValueToKey("Bin").Fit(data)
                .Transform(data);
            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong.
            var normalize = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: false);

            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong but make sure zero values would
            // remain zero after normalization. Helps preserve sparsity.
            var normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
            var fixZeroData = normalizeFixZeroTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.5000, 1.0000, 0.0000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.0000, 0.0000, 0.0000, 1.0000
            //  0.0000, 0.0000, 0.0000, 1.0000

            var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
                .ToArray();

            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.0000, 1.0000, 0.0000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.0000,-0.5000, 0.0000, 1.0000
            //  0.0000,-0.5000, 0.0000, 1.0000

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters.
            // If we have multiple columns transformations we need to pass index of
            // InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as BinNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine("y = (Index(x) / " + transformParams.Density[0] +
                ") - " + (transformParams.Offset.Length == 0 ? 0 : transformParams
                .Offset[0]));

            Console.WriteLine("Where Index(x) is the index of the bin to which " +
                "x belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                transformParams.UpperBounds[0]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: 4.5 7 ∞

            var fixZeroParams = normalizeFixZeroTransform
                .GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
                ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine(" y = (Index(x) / " + fixZeroParams.Density[1] +
                ") - " + (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
                .Offset[1]));

            Console.WriteLine("Where Index(x) is the index of the bin to which x " +
                "belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                fixZeroParams.UpperBounds[1]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0.5
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: -2 1.5 ∞
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public string Bin { get; set; }
        }
    }
}

S’applique à