NormalizationCatalog.NormalizeLpNorm Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Créez un LpNormNormalizingEstimatorvecteur qui normalise (met à l’échelle) les vecteurs de la colonne d’entrée vers la norme d’unité.
Le type de norme utilisé est défini par norm
. Le paramètre ensureZeroMean
sur true
, applique une étape de prétraitement pour que la moyenne de la colonne spécifiée soit un vecteur zéro.
public static Microsoft.ML.Transforms.LpNormNormalizingEstimator NormalizeLpNorm (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase.NormFunction norm = Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase+NormFunction.L2, bool ensureZeroMean = false);
static member NormalizeLpNorm : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase.NormFunction * bool -> Microsoft.ML.Transforms.LpNormNormalizingEstimator
<Extension()>
Public Function NormalizeLpNorm (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional norm As LpNormNormalizingEstimatorBase.NormFunction = Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase+NormFunction.L2, Optional ensureZeroMean As Boolean = false) As LpNormNormalizingEstimator
Paramètres
- catalog
- TransformsCatalog
Catalogue de la transformation.
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
Le type de données de cette colonne sera identique au type de données de la colonne d’entrée.
- inputColumnName
- String
Nom de la colonne à normaliser. Si la valeur est définie null
, la valeur du outputColumnName
fichier sera utilisée comme source.
Cet estimateur opère sur des vecteurs de taille connue de Single.
Type de norme à utiliser pour normaliser chaque échantillon. La norme indiquée du vecteur résultant sera normalisée en une.
- ensureZeroMean
- Boolean
Si true
, soustrait la moyenne de chaque valeur avant de normaliser et d’utiliser l’entrée brute sinon.
Retours
Exemples
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
namespace Samples.Dynamic
{
class NormalizeLpNorm
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 1, 1, 0, 0} },
new DataPoint(){ Features = new float[4] { 2, 2, 0, 0} },
new DataPoint(){ Features = new float[4] { 1, 0, 1, 0} },
new DataPoint(){ Features = new float[4] { 0, 1, 0, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
var approximation = mlContext.Transforms.NormalizeLpNorm("Features",
norm: LpNormNormalizingEstimatorBase.NormFunction.L1,
ensureZeroMean: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = approximation.Fit(data);
var transformedData = tansformer.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 0.2500, 0.2500, -0.2500, -0.2500
// 0.2500, 0.2500, -0.2500, -0.2500
// 0.2500, -0.2500, 0.2500, -0.2500
// -0.2500, 0.2500, -0.2500, 0.2500
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
}
}
}