MklComponentsCatalog.VectorWhiten Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Prend la colonne remplie d’un vecteur de variables aléatoires avec une matrice de covariance connue dans un ensemble de nouvelles variables dont la covariance est la matrice d’identité, ce qui signifie qu’elles ne sont pas corrélées et chacune ont la variance 1.
public static Microsoft.ML.Transforms.VectorWhiteningEstimator VectorWhiten (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.WhiteningKind kind = Microsoft.ML.Transforms.WhiteningKind.ZeroPhaseComponentAnalysis, float epsilon = 1E-05, int maximumNumberOfRows = 100000, int rank = 0);
static member VectorWhiten : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.WhiteningKind * single * int * int -> Microsoft.ML.Transforms.VectorWhiteningEstimator
<Extension()>
Public Function VectorWhiten (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional kind As WhiteningKind = Microsoft.ML.Transforms.WhiteningKind.ZeroPhaseComponentAnalysis, Optional epsilon As Single = 1E-05, Optional maximumNumberOfRows As Integer = 100000, Optional rank As Integer = 0) As VectorWhiteningEstimator
Paramètres
- catalog
- TransformsCatalog
Catalogue de la transformation.
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
- inputColumnName
- String
Nom de la colonne à transformer. Si la valeur est définie null
, la valeur du outputColumnName
fichier sera utilisée comme source.
- kind
- WhiteningKind
Type de blancissement (PCA/ZCA).
- epsilon
- Single
Constante de blancissement, empêche la division par zéro.
- maximumNumberOfRows
- Int32
Nombre maximal de lignes utilisées pour entraîner la transformation.
- rank
- Int32
Dans le cas d’un blancissement PCA, indique le nombre de composants à conserver.
Retours
Exemples
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public sealed class VectorWhiten
{
/// This example requires installation of additional nuget package
/// <a href="https://www.nuget.org/packages/Microsoft.ML.Mkl.Components/">Microsoft.ML.Mkl.Components</a>.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Get a small dataset as an IEnumerable and convert it to an IDataView.
var data = GetVectorOfNumbersData();
var trainData = ml.Data.LoadFromEnumerable(data);
// Preview of the data.
//
// Features
// 0 1 2 3 4 5 6 7 8 9
// 1 2 3 4 5 6 7 8 9 0
// 2 3 4 5 6 7 8 9 0 1
// 3 4 5 6 7 8 9 0 1 2
// 4 5 6 7 8 9 0 1 2 3
// 5 6 7 8 9 0 1 2 3 4
// 6 7 8 9 0 1 2 3 4 5
// A small printing utility.
Action<string, IEnumerable<VBuffer<float>>> printHelper = (colName,
column) =>
{
Console.WriteLine($"{colName} column obtained " +
$"post-transformation.");
foreach (var row in column)
Console.WriteLine(string.Join(" ", row.DenseValues().Select(x =>
x.ToString("f3"))) + " ");
};
// A pipeline to project Features column into white noise vector.
var whiteningPipeline = ml.Transforms.VectorWhiten(nameof(
SampleVectorOfNumbersData.Features), kind: Microsoft.ML.Transforms
.WhiteningKind.ZeroPhaseComponentAnalysis);
// The transformed (projected) data.
var transformedData = whiteningPipeline.Fit(trainData).Transform(
trainData);
// Getting the data of the newly created column, so we can preview it.
var whitening = transformedData.GetColumn<VBuffer<float>>(
transformedData.Schema[nameof(SampleVectorOfNumbersData.Features)]);
printHelper(nameof(SampleVectorOfNumbersData.Features), whitening);
// Features column obtained post-transformation.
//
//-0.394 -0.318 -0.243 -0.168 0.209 0.358 0.433 0.589 0.873 2.047
//-0.034 0.030 0.094 0.159 0.298 0.427 0.492 0.760 1.855 -1.197
// 0.099 0.161 0.223 0.286 0.412 0.603 0.665 1.797 -1.265 -0.172
// 0.211 0.277 0.344 0.410 0.606 1.267 1.333 -1.340 -0.205 0.065
// 0.454 0.523 0.593 0.664 1.886 -0.757 -0.687 -0.022 0.176 0.310
// 0.863 0.938 1.016 1.093 -1.326 -0.096 -0.019 0.189 0.330 0.483
}
private class SampleVectorOfNumbersData
{
[VectorType(10)]
public float[] Features { get; set; }
}
/// <summary>
/// Returns a few rows of the infertility dataset.
/// </summary>
private static IEnumerable<SampleVectorOfNumbersData>
GetVectorOfNumbersData()
{
var data = new List<SampleVectorOfNumbersData>();
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 0,
1, 2, 3, 4, 5, 6, 7, 8, 9 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 1,
2, 3, 4, 5, 6, 7, 8, 9, 0 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 2, 3, 4, 5, 6, 7, 8, 9, 0, 1 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 5, 6, 7, 8, 9, 0, 1, 2, 3, 4 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 6, 7, 8, 9, 0, 1, 2, 3, 4, 5 }
});
return data;
}
}
}
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public sealed class VectorWhitenWithOptions
{
/// This example requires installation of additional nuget package
/// <a href="https://www.nuget.org/packages/Microsoft.ML.Mkl.Components/">Microsoft.ML.Mkl.Components</a>.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Get a small dataset as an IEnumerable and convert it to an IDataView.
var data = GetVectorOfNumbersData();
var trainData = ml.Data.LoadFromEnumerable(data);
// Preview of the data.
//
// Features
// 0 1 2 3 4 5 6 7 8 9
// 1 2 3 4 5 6 7 8 9 0
// 2 3 4 5 6 7 8 9 0 1
// 3 4 5 6 7 8 9 0 1 2
// 4 5 6 7 8 9 0 1 2 3
// 5 6 7 8 9 0 1 2 3 4
// 6 7 8 9 0 1 2 3 4 5
// A small printing utility.
Action<string, IEnumerable<VBuffer<float>>> printHelper = (colName,
column) =>
{
Console.WriteLine($"{colName} column obtained" +
$"post-transformation.");
foreach (var row in column)
Console.WriteLine(string.Join(" ", row.DenseValues().Select(x =>
x.ToString("f3"))) + " ");
};
// A pipeline to project Features column into white noise vector.
var whiteningPipeline = ml.Transforms.VectorWhiten(nameof(
SampleVectorOfNumbersData.Features), kind: Microsoft.ML.Transforms
.WhiteningKind.PrincipalComponentAnalysis, rank: 4);
// The transformed (projected) data.
var transformedData = whiteningPipeline.Fit(trainData).Transform(
trainData);
// Getting the data of the newly created column, so we can preview it.
var whitening = transformedData.GetColumn<VBuffer<float>>(
transformedData.Schema[nameof(SampleVectorOfNumbersData.Features)]);
printHelper(nameof(SampleVectorOfNumbersData.Features), whitening);
// Features column obtained post-transformation.
// -0.979 0.867 1.449 1.236
// -1.030 1.012 0.426 -0.902
// -1.047 0.677 -0.946 -1.060
// -1.029 0.019 -1.502 1.108
// -0.972 -1.338 -0.028 0.614
// -0.938 -1.405 0.752 -0.967
}
private class SampleVectorOfNumbersData
{
[VectorType(10)]
public float[] Features { get; set; }
}
/// <summary>
/// Returns a few rows of the infertility dataset.
/// </summary>
private static IEnumerable<SampleVectorOfNumbersData>
GetVectorOfNumbersData()
{
var data = new List<SampleVectorOfNumbersData>();
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 0,
1, 2, 3, 4, 5, 6, 7, 8, 9 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 1,
2, 3, 4, 5, 6, 7, 8, 9, 0 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 2, 3, 4, 5, 6, 7, 8, 9, 0, 1 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 5, 6, 7, 8, 9, 0, 1, 2, 3, 4 }
});
data.Add(new SampleVectorOfNumbersData
{
Features = new float[10] { 6, 7, 8, 9, 0, 1, 2, 3, 4, 5 }
});
return data;
}
}
}