ImageEstimatorsCatalog.LoadImages Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Créez un ImageLoadingEstimator, qui charge les données de la colonne spécifiée dans en inputColumnName
tant qu’image vers une nouvelle colonne : outputColumnName
.
public static Microsoft.ML.Data.ImageLoadingEstimator LoadImages (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string imageFolder, string inputColumnName = default);
static member LoadImages : Microsoft.ML.TransformsCatalog * string * string * string -> Microsoft.ML.Data.ImageLoadingEstimator
<Extension()>
Public Function LoadImages (catalog As TransformsCatalog, outputColumnName As String, imageFolder As String, Optional inputColumnName As String = Nothing) As ImageLoadingEstimator
Paramètres
- catalog
- TransformsCatalog
Catalogue de la transformation.
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
Le type de données de cette colonne sera MLImage.
- imageFolder
- String
Dossier dans lequel rechercher des images.
- inputColumnName
- String
Nom de la colonne avec les chemins d’accès aux images à charger. Cet estimateur opère sur les données de texte.
Retours
Exemples
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class LoadImages
{
// Loads the images of the imagesFolder into an IDataView.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Downloading a few images, and an images.tsv file, which contains a
// list of the files from the dotnet/machinelearning/test/data/images/.
// If you inspect the fileSystem, after running this line, an "images"
// folder will be created, containing 4 images, and a .tsv file
// enumerating the images.
var imagesDataFile = Microsoft.ML.SamplesUtils.DatasetUtils
.GetSampleImages();
// Preview of the content of the images.tsv file
//
// imagePath imageType
// tomato.bmp tomato
// banana.jpg banana
// hotdog.jpg hotdog
// tomato.jpg tomato
var data = mlContext.Data.CreateTextLoader(new TextLoader.Options()
{
Columns = new[]
{
new TextLoader.Column("ImagePath", DataKind.String, 0),
new TextLoader.Column("Name", DataKind.String, 1),
}
}).Load(imagesDataFile);
var imagesFolder = Path.GetDirectoryName(imagesDataFile);
// Image loading pipeline.
var pipeline = mlContext.Transforms.LoadImages("ImageObject",
imagesFolder, "ImagePath");
var transformedData = pipeline.Fit(data).Transform(data);
PrintColumns(transformedData);
// Preview the transformedData.
// ImagePath Name ImageObject
// tomato.bmp tomato {Width=800, Height=534}
// banana.jpg banana {Width=800, Height=288}
// hotdog.jpg hotdog {Width=800, Height=391}
// tomato.jpg tomato {Width=800, Height=534}
}
private static void PrintColumns(IDataView transformedData)
{
// The transformedData IDataView contains the loaded images now.
Console.WriteLine("{0, -25} {1, -25} {2, -25}", "ImagePath", "Name",
"ImageObject");
using (var cursor = transformedData.GetRowCursor(transformedData
.Schema))
{
// Note that it is best to get the getters and values *before*
// iteration, so as to facilitate buffer sharing (if applicable),
// and column-type validation once, rather than many times.
ReadOnlyMemory<char> imagePath = default;
ReadOnlyMemory<char> name = default;
MLImage imageObject = null;
var imagePathGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["ImagePath"]);
var nameGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["Name"]);
var imageObjectGetter = cursor.GetGetter<MLImage>(cursor.Schema[
"ImageObject"]);
while (cursor.MoveNext())
{
imagePathGetter(ref imagePath);
nameGetter(ref name);
imageObjectGetter(ref imageObject);
Console.WriteLine("{0, -25} {1, -25} {2, -25}",
imagePath, name,
$"Width={imageObject.Width}, Height={imageObject.Height}");
}
// Dispose the image.
imageObject.Dispose();
}
}
}
}