Créer une table Apache Kafka® sur Apache Flink® sur HDInsight sur AKS
Remarque
Nous allons mettre hors service Azure HDInsight sur AKS le 31 janvier 2025. Avant le 31 janvier 2025, vous devrez migrer vos charges de travail vers Microsoft Fabric ou un produit Azure équivalent afin d’éviter leur arrêt brutal. Les clusters restants de votre abonnement seront arrêtés et supprimés de l’hôte.
Seul le support de base est disponible jusqu’à la date de mise hors service.
Important
Cette fonctionnalité est disponible actuellement en mode Aperçu. Les Conditions d’utilisation supplémentaires pour les préversions de Microsoft Azure contiennent davantage de conditions légales qui s’appliquent aux fonctionnalités Azure en version bêta, en préversion ou ne se trouvant pas encore en disponibilité générale. Pour plus d’informations sur cette préversion spécifique, consultez les Informations sur la préversion d’Azure HDInsight sur AKS. Pour toute question ou pour des suggestions à propos des fonctionnalités, veuillez envoyer vos requêtes et leurs détails sur AskHDInsight, et suivez-nous sur la Communauté Azure HDInsight pour plus de mises à jour.
À l'aide de cet exemple, découvrez comment créer une table Kafka sur Apache FlinkSQL.
Prérequis
Connecteur Kafka SQL sur Apache Flink
Le connecteur Kafka permet de lire et d'écrire des données dans des sujets Kafka. Pour plus d’informations, consultez Connecteur Apache Kafka SQL.
Créer une table Kafka sur Flink SQL
Préparer le sujet et les données sur HDInsight Kafka
Préparez des messages avec weblog.py
import random
import json
import time
from datetime import datetime
user_set = [
'John',
'XiaoMing',
'Mike',
'Tom',
'Machael',
'Zheng Hu',
'Zark',
'Tim',
'Andrew',
'Pick',
'Sean',
'Luke',
'Chunck'
]
web_set = [
'https://google.com',
'https://facebook.com?id=1',
'https://tmall.com',
'https://baidu.com',
'https://taobao.com',
'https://aliyun.com',
'https://apache.com',
'https://flink.apache.com',
'https://hbase.apache.com',
'https://github.com',
'https://gmail.com',
'https://stackoverflow.com',
'https://python.org'
]
def main():
while True:
if random.randrange(10) < 4:
url = random.choice(web_set[:3])
else:
url = random.choice(web_set)
log_entry = {
'userName': random.choice(user_set),
'visitURL': url,
'ts': datetime.now().strftime("%m/%d/%Y %H:%M:%S")
}
print(json.dumps(log_entry))
time.sleep(0.05)
if __name__ == "__main__":
main()
Pipeline vers le sujet Kafka
sshuser@hn0-contsk:~$ python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events
Autres commandes :
-- create topic
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic click_events --bootstrap-server wn0-contsk:9092
-- delete topic
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --delete --topic click_events --bootstrap-server wn0-contsk:9092
-- consume topic
sshuser@hn0-contsk:~$ /usr/hdp/current/kafka-broker/bin/kafka-console-consumer.sh --bootstrap-server wn0-contsk:9092 --topic click_events --from-beginning
{"userName": "Luke", "visitURL": "https://flink.apache.com", "ts": "06/26/2023 14:33:43"}
{"userName": "Tom", "visitURL": "https://stackoverflow.com", "ts": "06/26/2023 14:33:43"}
{"userName": "Chunck", "visitURL": "https://google.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Chunck", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Andrew", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Pick", "visitURL": "https://google.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Mike", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Zheng Hu", "visitURL": "https://tmall.com", "ts": "06/26/2023 14:33:44"}
{"userName": "Luke", "visitURL": "https://facebook.com?id=1", "ts": "06/26/2023 14:33:44"}
{"userName": "John", "visitURL": "https://flink.apache.com", "ts": "06/26/2023 14:33:44"}
Client SQL Apache Flink
Des instructions détaillées sont fournies sur la façon d’utiliser Secure Shell pour le client Flink SQL.
Télécharger les dépendances et le connecteur Kafka SQL dans SSH
Nous utilisons les dépendances de Kafka 3.2.0 dans l’étape ci-dessous. Vous devez mettre à jour la commande en fonction de votre version de Kafka sur le cluster HDInsight.
wget https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/3.2.0/kafka-clients-3.2.0.jar
wget https://repo1.maven.org/maven2/org/apache/flink/flink-connector-kafka/1.17.0/flink-connector-kafka-1.17.0.jar
Connectez-vous au client SQL Apache Flink
Connectons-nous maintenant au client Flink SQL avec les fichiers jar du client Kafka SQL.
msdata@pod-0 [ /opt/flink-webssh ]$ bin/sql-client.sh -j flink-connector-kafka-1.17.0.jar -j kafka-clients-3.2.0.jar
Créer une table Kafka sur Apache Flink SQL
Créons la table Kafka sur Flink SQL et sélectionnons la table Kafka sur Flink SQL.
Vous devez mettre à jour les adresses IP de votre serveur d'amorçage Kafka dans l'extrait ci-dessous.
CREATE TABLE KafkaTable (
`userName` STRING,
`visitURL` STRING,
`ts` TIMESTAMP(3) METADATA FROM 'timestamp'
) WITH (
'connector' = 'kafka',
'topic' = 'click_events',
'properties.bootstrap.servers' = '<update-kafka-bootstrapserver-ip>:9092,<update-kafka-bootstrapserver-ip>:9092,<update-kafka-bootstrapserver-ip>:9092',
'properties.group.id' = 'my_group',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
);
select * from KafkaTable;
Produire des messages Kafka
Produisons maintenant des messages Kafka sur la même rubrique, à l’aide de HDInsight Kafka.
python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events
Tableau sur Apache Flink SQL
Vous pouvez surveiller la table sur Flink SQL.
Voici les travaux de transmission en continu sur l’interface utilisateur web Flink.
Référence
- Connecteur SQL Apache Kafka
- Apache, Apache Kafka, Kafka, Apache Flink, Flink et les noms de projet open source associés sont des marques de commerce d’Apache Software Foundation (ASF).