Interroger SQL Server avec Azure Databricks
Cet article vous montre comment connecter Azure Databricks à Microsoft SQL Server pour lire et écrire des données.
Important
Les configurations décrites dans cet article sont Expérimentales. Les fonctionnalités expérimentales sont fournies en l’état et ne sont pas prises en charge par Databricks via le support technique client. Pour bénéficier d’une prise en charge complète de la fédération de requêtes, vous devez plutôt utiliser Lakehouse Federation, qui permet à vos utilisateurs Azure Databricks de profiter de la syntaxe Unity Catalog et des outils de gouvernance des données.
Configurer une connexion à SQL Server
Dans Databricks Runtime 11.3 LTS et versions ultérieures, vous pouvez utiliser le mot clé sqlserver
afin d’utiliser le pilote inclus pour la connexion à SQL Server. Lorsque vous utilisez des DataFrames, utilisez la syntaxe suivante :
Python
remote_table = (spark.read
.format("sqlserver")
.option("host", "hostName")
.option("port", "port") # optional, can use default port 1433 if omitted
.option("user", "username")
.option("password", "password")
.option("database", "databaseName")
.option("dbtable", "schemaName.tableName") # (if schemaName not provided, default to "dbo")
.load()
)
Scala
val remote_table = spark.read
.format("sqlserver")
.option("host", "hostName")
.option("port", "port") // optional, can use default port 1433 if omitted
.option("user", "username")
.option("password", "password")
.option("database", "databaseName")
.option("dbtable", "schemaName.tableName") // (if schemaName not provided, default to "dbo")
.load()
Lorsque vous utilisez SQL, spécifiez sqlserver
dans la clause USING
et passez des options lors de la création d’une table, comme illustré dans l’exemple suivant :
DROP TABLE IF EXISTS sqlserver_table;
CREATE TABLE sqlserver_table
USING sqlserver
OPTIONS (
dbtable '<schema-name.table-name>',
host '<host-name>',
port '1433',
database '<database-name>',
user '<username>',
password '<password>'
);
Utiliser le pilote JDBC hérité
Dans Databricks Runtime 10.4 LTS et versions ultérieures, vous devez spécifier le pilote et les configurations en utilisant des paramètres JDBC. L’exemple suivant interroge SQL Server en tirant parti de son pilote JDBC. Pour plus d’informations sur la lecture, l’écriture, la configuration du parallélisme et le pushdown des requêtes, voir Bases de données de requête à l’aide de JDBC.
Python
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
database_host = "<database-host-url>"
database_port = "1433" # update if you use a non-default port
database_name = "<database-name>"
table = "<table-name>"
user = "<username>"
password = "<password>"
url = f"jdbc:sqlserver://{database_host}:{database_port};database={database_name}"
remote_table = (spark.read
.format("jdbc")
.option("driver", driver)
.option("url", url)
.option("dbtable", table)
.option("user", user)
.option("password", password)
.load()
)
Scala
val driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
val database_host = "<database-host-url>"
val database_port = "1433" // update if you use a non-default port
val database_name = "<database-name>"
val table = "<table-name>"
val user = "<username>"
val password = "<password>"
val url = s"jdbc:sqlserver://{database_host}:{database_port};database={database_name}"
val remote_table = spark.read
.format("jdbc")
.option("driver", driver)
.option("url", url)
.option("dbtable", table)
.option("user", user)
.option("password", password)
.load()