Partage via


Tutoriel : Créer un moteur de recherche personnalisé et un système de questions-réponses

Dans ce didacticiel, découvrez comment indexer et interroger des données volumineuses chargées à partir d'un cluster Spark. Vous configurez un Jupyter Notebook qui effectue les actions suivantes :

  • Charger plusieurs formulaires (factures) dans un dataframe dans une session Apache Spark
  • Analyser les formulaires pour en déterminer les caractéristiques
  • Assembler la sortie obtenue dans une structure de données tabulaires
  • Écrire la sortie dans un index de recherche qui est hébergé dans la Recherche cognitive Azure
  • Explorer et interroger le contenu que vous avez créé

1 – Configurer les dépendances

Nous commençons par importer des packages et nous connecter aux ressources Azure utilisées dans ce workflow.

import os
from pyspark.sql import SparkSession
from synapse.ml.core.platform import running_on_synapse, find_secret

# Bootstrap Spark Session
spark = SparkSession.builder.getOrCreate()

cognitive_key = find_secret("cognitive-api-key") # replace with your cognitive api key
cognitive_location = "eastus"

translator_key = find_secret("translator-key") # replace with your cognitive api key
translator_location = "eastus"

search_key = find_secret("azure-search-key") # replace with your cognitive api key
search_service = "mmlspark-azure-search"
search_index = "form-demo-index-5"

openai_key = find_secret("openai-api-key") # replace with your open ai api key
openai_service_name = "synapseml-openai"
openai_deployment_name = "gpt-35-turbo"
openai_url = f"https://{openai_service_name}.openai.azure.com/"

2 – Charger les données dans Spark

Ce code charge quelques fichiers externes d’un compte de stockage Azure utilisé à des fins de démonstration. Les fichiers sont diverses factures et sont lus dans un dataframe.

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType


def blob_to_url(blob):
    [prefix, postfix] = blob.split("@")
    container = prefix.split("/")[-1]
    split_postfix = postfix.split("/")
    account = split_postfix[0]
    filepath = "/".join(split_postfix[1:])
    return "https://{}/{}/{}".format(account, container, filepath)


df2 = (
    spark.read.format("binaryFile")
    .load("wasbs://ignite2021@mmlsparkdemo.blob.core.windows.net/form_subset/*")
    .select("path")
    .limit(10)
    .select(udf(blob_to_url, StringType())("path").alias("url"))
    .cache()
)

display(df2)

3 – Appliquer la reconnaissance de formulaire

Ce code charge le transformateur AnalyzeInvoices et passe une référence au dataframe contenant les factures. Il appelle le modèle de facture prédéfini d’Azure Forms Analyzer.

from synapse.ml.cognitive import AnalyzeInvoices

analyzed_df = (
    AnalyzeInvoices()
    .setSubscriptionKey(cognitive_key)
    .setLocation(cognitive_location)
    .setImageUrlCol("url")
    .setOutputCol("invoices")
    .setErrorCol("errors")
    .setConcurrency(5)
    .transform(df2)
    .cache()
)

display(analyzed_df)

4 – Simplifiez la sortie de la reconnaissance de formulaire

Ce code utilise FormOntologyLearner, un transformateur qui analyse la sortie des transformateurs Form Recognizer (pour Azure AI Intelligence documentaire) et en déduit une structure de données tabulaire. La sortie d’AnalyzeInvoices est dynamique et varie selon les caractéristiques détectées dans votre contenu.

FormOntologyLearner étend l’utilitaire du transformateur AnalyzeInvoices en recherchant des modèles qui peuvent être utilisés pour créer une structure de données tabulaires. L'organisation de la sortie en plusieurs colonnes et lignes simplifie l'analyse en aval.

from synapse.ml.cognitive import FormOntologyLearner

organized_df = (
    FormOntologyLearner()
    .setInputCol("invoices")
    .setOutputCol("extracted")
    .fit(analyzed_df)
    .transform(analyzed_df)
    .select("url", "extracted.*")
    .cache()
)

display(organized_df)

Avec notre joli cadre de données tabulaire, nous pouvons aplatir les tables imbriquées trouvées dans les formulaires avec du SparkSQL

from pyspark.sql.functions import explode, col

itemized_df = (
    organized_df.select("*", explode(col("Items")).alias("Item"))
    .drop("Items")
    .select("Item.*", "*")
    .drop("Item")
)

display(itemized_df)

5 – Ajouter des traductions

Ce code charge Translate, un transformateur qui appelle le service Azure AI Traducteur dans Azure AI services. Le texte d’origine, qui est en anglais dans la colonne « Description », est traduit automatiquement en différentes langues. Toutes les sorties sont regroupées dans le tableau « output.translations ».

from synapse.ml.cognitive import Translate

translated_df = (
    Translate()
    .setSubscriptionKey(translator_key)
    .setLocation(translator_location)
    .setTextCol("Description")
    .setErrorCol("TranslationError")
    .setOutputCol("output")
    .setToLanguage(["zh-Hans", "fr", "ru", "cy"])
    .setConcurrency(5)
    .transform(itemized_df)
    .withColumn("Translations", col("output.translations")[0])
    .drop("output", "TranslationError")
    .cache()
)

display(translated_df)

6 – Traduire des produits en emojis avec OpenAI 🤯

from synapse.ml.cognitive.openai import OpenAIPrompt
from pyspark.sql.functions import trim, split

emoji_template = """ 
  Your job is to translate item names into emoji. Do not add anything but the emoji and end the translation with a comma
  
  Two Ducks: 🦆🦆,
  Light Bulb: 💡,
  Three Peaches: 🍑🍑🍑,
  Two kitchen stoves: ♨️♨️,
  A red car: 🚗,
  A person and a cat: 🧍🐈,
  A {Description}: """

prompter = (
    OpenAIPrompt()
    .setSubscriptionKey(openai_key)
    .setDeploymentName(openai_deployment_name)
    .setUrl(openai_url)
    .setMaxTokens(5)
    .setPromptTemplate(emoji_template)
    .setErrorCol("error")
    .setOutputCol("Emoji")
)

emoji_df = (
    prompter.transform(translated_df)
    .withColumn("Emoji", trim(split(col("Emoji"), ",").getItem(0)))
    .drop("error", "prompt")
    .cache()
)
display(emoji_df.select("Description", "Emoji"))

7 – Déduire le continent de l'adresse du fournisseur avec OpenAI

continent_template = """
Which continent does the following address belong to? 

Pick one value from Europe, Australia, North America, South America, Asia, Africa, Antarctica. 

Dont respond with anything but one of the above. If you don't know the answer or cannot figure it out from the text, return None. End your answer with a comma.

Address: "6693 Ryan Rd, North Whales",
Continent: Europe,
Address: "6693 Ryan Rd",
Continent: None,
Address: "{VendorAddress}",
Continent:"""

continent_df = (
    prompter.setOutputCol("Continent")
    .setPromptTemplate(continent_template)
    .transform(emoji_df)
    .withColumn("Continent", trim(split(col("Continent"), ",").getItem(0)))
    .drop("error", "prompt")
    .cache()
)
display(continent_df.select("VendorAddress", "Continent"))

8 – Créer un index de recherche Azure pour les formulaires

from synapse.ml.cognitive import *
from pyspark.sql.functions import monotonically_increasing_id, lit

(
    continent_df.withColumn("DocID", monotonically_increasing_id().cast("string"))
    .withColumn("SearchAction", lit("upload"))
    .writeToAzureSearch(
        subscriptionKey=search_key,
        actionCol="SearchAction",
        serviceName=search_service,
        indexName=search_index,
        keyCol="DocID",
    )
)

9 – Essayez une requête de recherche

import requests

search_url = "https://{}.search.windows.net/indexes/{}/docs/search?api-version=2019-05-06".format(
    search_service, search_index
)
requests.post(
    search_url, json={"search": "door"}, headers={"api-key": search_key}
).json()

10 – Créez un chatbot qui peut utiliser Azure Search comme outil 🧠🔧

import json
import openai

openai.api_type = "azure"
openai.api_base = openai_url
openai.api_key = openai_key
openai.api_version = "2023-03-15-preview"

chat_context_prompt = f"""
You are a chatbot designed to answer questions with the help of a search engine that has the following information:

{continent_df.columns}

If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be brief. If you need to use the search engine to solve the please output a json in the form of {{"query": "example_query"}}
"""


def search_query_prompt(question):
    return f"""
Given the search engine above, what would you search for to answer the following question?

Question: "{question}"

Please output a json in the form of {{"query": "example_query"}}
"""


def search_result_prompt(query):
    search_results = requests.post(
        search_url, json={"search": query}, headers={"api-key": search_key}
    ).json()
    return f"""

You previously ran a search for "{query}" which returned the following results:

{search_results}

You should use the results to help you answer questions. If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be Brief and mention which query you used to solve the problem. 
"""


def prompt_gpt(messages):
    response = openai.ChatCompletion.create(
        engine=openai_deployment_name, messages=messages, max_tokens=None, top_p=0.95
    )
    return response["choices"][0]["message"]["content"]


def custom_chatbot(question):
    while True:
        try:
            query = json.loads(
                prompt_gpt(
                    [
                        {"role": "system", "content": chat_context_prompt},
                        {"role": "user", "content": search_query_prompt(question)},
                    ]
                )
            )["query"]

            return prompt_gpt(
                [
                    {"role": "system", "content": chat_context_prompt},
                    {"role": "system", "content": search_result_prompt(query)},
                    {"role": "user", "content": question},
                ]
            )
        except Exception as e:
            raise e

11 – Poser une question à notre chatbot

custom_chatbot("What did Luke Diaz buy?")

12 – Une double vérification rapide

display(
    continent_df.where(col("CustomerName") == "Luke Diaz")
    .select("Description")
    .distinct()
)