Muokkaa

Jaa


TypeBuilder Class

Definition

Defines and creates new instances of classes during run time.

public ref class TypeBuilder sealed : Type
public ref class TypeBuilder sealed : System::Reflection::TypeInfo
public ref class TypeBuilder abstract : System::Reflection::TypeInfo
public ref class TypeBuilder sealed : Type, System::Runtime::InteropServices::_TypeBuilder
public ref class TypeBuilder sealed : System::Reflection::TypeInfo, System::Runtime::InteropServices::_TypeBuilder
public sealed class TypeBuilder : Type
public sealed class TypeBuilder : System.Reflection.TypeInfo
public abstract class TypeBuilder : System.Reflection.TypeInfo
[System.Runtime.InteropServices.ClassInterface(System.Runtime.InteropServices.ClassInterfaceType.None)]
public sealed class TypeBuilder : Type, System.Runtime.InteropServices._TypeBuilder
[System.Runtime.InteropServices.ClassInterface(System.Runtime.InteropServices.ClassInterfaceType.None)]
[System.Runtime.InteropServices.ComVisible(true)]
public sealed class TypeBuilder : Type, System.Runtime.InteropServices._TypeBuilder
[System.Runtime.InteropServices.ClassInterface(System.Runtime.InteropServices.ClassInterfaceType.None)]
[System.Runtime.InteropServices.ComVisible(true)]
public sealed class TypeBuilder : System.Reflection.TypeInfo, System.Runtime.InteropServices._TypeBuilder
type TypeBuilder = class
    inherit Type
type TypeBuilder = class
    inherit TypeInfo
[<System.Runtime.InteropServices.ClassInterface(System.Runtime.InteropServices.ClassInterfaceType.None)>]
type TypeBuilder = class
    inherit Type
    interface _TypeBuilder
[<System.Runtime.InteropServices.ClassInterface(System.Runtime.InteropServices.ClassInterfaceType.None)>]
[<System.Runtime.InteropServices.ComVisible(true)>]
type TypeBuilder = class
    inherit Type
    interface _TypeBuilder
[<System.Runtime.InteropServices.ClassInterface(System.Runtime.InteropServices.ClassInterfaceType.None)>]
[<System.Runtime.InteropServices.ComVisible(true)>]
type TypeBuilder = class
    inherit TypeInfo
    interface _TypeBuilder
Public NotInheritable Class TypeBuilder
Inherits Type
Public NotInheritable Class TypeBuilder
Inherits TypeInfo
Public MustInherit Class TypeBuilder
Inherits TypeInfo
Public NotInheritable Class TypeBuilder
Inherits Type
Implements _TypeBuilder
Public NotInheritable Class TypeBuilder
Inherits TypeInfo
Implements _TypeBuilder
Inheritance
TypeBuilder
Inheritance
TypeBuilder
Inheritance
TypeBuilder
Inheritance
Attributes
Implements

Examples

The following code example shows how to define and use a dynamic assembly. The example assembly contains one type, MyDynamicType, that has a private field, a property that gets and sets the private field, constructors that initialize the private field, and a method that multiplies a user-supplied number by the private field value and returns the result.

using namespace System;
using namespace System::Reflection;
using namespace System::Reflection::Emit;

void main()
{
    // This code creates an assembly that contains one type,
    // named "MyDynamicType", that has a private field, a property
    // that gets and sets the private field, constructors that
    // initialize the private field, and a method that multiplies
    // a user-supplied number by the private field value and returns
    // the result. In Visual C++ the type might look like this:
    /*
      public ref class MyDynamicType
      {
      private:
          int m_number;

      public:
          MyDynamicType() : m_number(42) {};
          MyDynamicType(int initNumber) : m_number(initNumber) {};
      
          property int Number
          {
              int get() { return m_number; }
              void set(int value) { m_number = value; }
          }

          int MyMethod(int multiplier)
          {
              return m_number * multiplier;
          }
      };
    */
      
    AssemblyName^ aName = gcnew AssemblyName("DynamicAssemblyExample");
    AssemblyBuilder^ ab = 
        AssemblyBuilder::DefineDynamicAssembly(
            aName, 
            AssemblyBuilderAccess::Run);

    // The module name is usually the same as the assembly name
    ModuleBuilder^ mb = 
        ab->DefineDynamicModule(aName->Name);
      
    TypeBuilder^ tb = mb->DefineType(
        "MyDynamicType", 
         TypeAttributes::Public);

    // Add a private field of type int (Int32).
    FieldBuilder^ fbNumber = tb->DefineField(
        "m_number", 
        int::typeid, 
        FieldAttributes::Private);

    // Define a constructor that takes an integer argument and 
    // stores it in the private field. 
    array<Type^>^ parameterTypes = { int::typeid };
    ConstructorBuilder^ ctor1 = tb->DefineConstructor(
        MethodAttributes::Public, 
        CallingConventions::Standard, 
        parameterTypes);

    ILGenerator^ ctor1IL = ctor1->GetILGenerator();
    // For a constructor, argument zero is a reference to the new
    // instance. Push it on the stack before calling the base
    // class constructor. Specify the default constructor of the 
    // base class (System::Object) by passing an empty array of 
    // types (Type::EmptyTypes) to GetConstructor.
    ctor1IL->Emit(OpCodes::Ldarg_0);
    ctor1IL->Emit(OpCodes::Call, 
        Object::typeid->GetConstructor(Type::EmptyTypes));
    // Push the instance on the stack before pushing the argument
    // that is to be assigned to the private field m_number.
    ctor1IL->Emit(OpCodes::Ldarg_0);
    ctor1IL->Emit(OpCodes::Ldarg_1);
    ctor1IL->Emit(OpCodes::Stfld, fbNumber);
    ctor1IL->Emit(OpCodes::Ret);

    // Define a default constructor that supplies a default value
    // for the private field. For parameter types, pass the empty
    // array of types or pass nullptr.
    ConstructorBuilder^ ctor0 = tb->DefineConstructor(
        MethodAttributes::Public, 
        CallingConventions::Standard, 
        Type::EmptyTypes);

    ILGenerator^ ctor0IL = ctor0->GetILGenerator();
    ctor0IL->Emit(OpCodes::Ldarg_0);
    ctor0IL->Emit(OpCodes::Call, 
        Object::typeid->GetConstructor(Type::EmptyTypes));
    // For a constructor, argument zero is a reference to the new
    // instance. Push it on the stack before pushing the default
    // value on the stack.
    ctor0IL->Emit(OpCodes::Ldarg_0);
    ctor0IL->Emit(OpCodes::Ldc_I4_S, 42);
    ctor0IL->Emit(OpCodes::Stfld, fbNumber);
    ctor0IL->Emit(OpCodes::Ret);

    // Define a property named Number that gets and sets the private 
    // field.
    //
    // The last argument of DefineProperty is nullptr, because the
    // property has no parameters. (If you don't specify nullptr, you must
    // specify an array of Type objects. For a parameterless property,
    // use the built-in array with no elements: Type::EmptyTypes)
    PropertyBuilder^ pbNumber = tb->DefineProperty(
        "Number", 
        PropertyAttributes::HasDefault, 
        int::typeid, 
        nullptr);
      
    // The property "set" and property "get" methods require a special
    // set of attributes.
    MethodAttributes getSetAttr = MethodAttributes::Public | 
        MethodAttributes::SpecialName | MethodAttributes::HideBySig;

    // Define the "get" accessor method for Number. The method returns
    // an integer and has no arguments. (Note that nullptr could be 
    // used instead of Types::EmptyTypes)
    MethodBuilder^ mbNumberGetAccessor = tb->DefineMethod(
        "get_Number", 
        getSetAttr, 
        int::typeid, 
        Type::EmptyTypes);
      
    ILGenerator^ numberGetIL = mbNumberGetAccessor->GetILGenerator();
    // For an instance property, argument zero is the instance. Load the 
    // instance, then load the private field and return, leaving the
    // field value on the stack.
    numberGetIL->Emit(OpCodes::Ldarg_0);
    numberGetIL->Emit(OpCodes::Ldfld, fbNumber);
    numberGetIL->Emit(OpCodes::Ret);
    
    // Define the "set" accessor method for Number, which has no return
    // type and takes one argument of type int (Int32).
    MethodBuilder^ mbNumberSetAccessor = tb->DefineMethod(
        "set_Number", 
        getSetAttr, 
        nullptr, 
        gcnew array<Type^> { int::typeid });
      
    ILGenerator^ numberSetIL = mbNumberSetAccessor->GetILGenerator();
    // Load the instance and then the numeric argument, then store the
    // argument in the field.
    numberSetIL->Emit(OpCodes::Ldarg_0);
    numberSetIL->Emit(OpCodes::Ldarg_1);
    numberSetIL->Emit(OpCodes::Stfld, fbNumber);
    numberSetIL->Emit(OpCodes::Ret);
      
    // Last, map the "get" and "set" accessor methods to the 
    // PropertyBuilder. The property is now complete. 
    pbNumber->SetGetMethod(mbNumberGetAccessor);
    pbNumber->SetSetMethod(mbNumberSetAccessor);

    // Define a method that accepts an integer argument and returns
    // the product of that integer and the private field m_number. This
    // time, the array of parameter types is created on the fly.
    MethodBuilder^ meth = tb->DefineMethod(
        "MyMethod", 
        MethodAttributes::Public, 
        int::typeid, 
        gcnew array<Type^> { int::typeid });

    ILGenerator^ methIL = meth->GetILGenerator();
    // To retrieve the private instance field, load the instance it
    // belongs to (argument zero). After loading the field, load the 
    // argument one and then multiply. Return from the method with 
    // the return value (the product of the two numbers) on the 
    // execution stack.
    methIL->Emit(OpCodes::Ldarg_0);
    methIL->Emit(OpCodes::Ldfld, fbNumber);
    methIL->Emit(OpCodes::Ldarg_1);
    methIL->Emit(OpCodes::Mul);
    methIL->Emit(OpCodes::Ret);

    // Finish the type->
    Type^ t = tb->CreateType();

    // Because AssemblyBuilderAccess includes Run, the code can be
    // executed immediately. Start by getting reflection objects for
    // the method and the property.
    MethodInfo^ mi = t->GetMethod("MyMethod");
    PropertyInfo^ pi = t->GetProperty("Number");
  
    // Create an instance of MyDynamicType using the default 
    // constructor. 
    Object^ o1 = Activator::CreateInstance(t);

    // Display the value of the property, then change it to 127 and 
    // display it again. Use nullptr to indicate that the property
    // has no index.
    Console::WriteLine("o1->Number: {0}", pi->GetValue(o1, nullptr));
    pi->SetValue(o1, 127, nullptr);
    Console::WriteLine("o1->Number: {0}", pi->GetValue(o1, nullptr));

    // Call MyMethod, passing 22, and display the return value, 22
    // times 127. Arguments must be passed as an array, even when
    // there is only one.
    array<Object^>^ arguments = { 22 };
    Console::WriteLine("o1->MyMethod(22): {0}", 
        mi->Invoke(o1, arguments));

    // Create an instance of MyDynamicType using the constructor
    // that specifies m_Number. The constructor is identified by
    // matching the types in the argument array. In this case, 
    // the argument array is created on the fly. Display the 
    // property value.
    Object^ o2 = Activator::CreateInstance(t, 
        gcnew array<Object^> { 5280 });
    Console::WriteLine("o2->Number: {0}", pi->GetValue(o2, nullptr));
};

/* This code produces the following output:

o1->Number: 42
o1->Number: 127
o1->MyMethod(22): 2794
o2->Number: 5280
 */
using System;
using System.Reflection;
using System.Reflection.Emit;

class DemoAssemblyBuilder
{
    public static void Main()
    {
        // This code creates an assembly that contains one type,
        // named "MyDynamicType", that has a private field, a property
        // that gets and sets the private field, constructors that
        // initialize the private field, and a method that multiplies
        // a user-supplied number by the private field value and returns
        // the result. In C# the type might look like this:
        /*
        public class MyDynamicType
        {
            private int m_number;

            public MyDynamicType() : this(42) {}
            public MyDynamicType(int initNumber)
            {
                m_number = initNumber;
            }

            public int Number
            {
                get { return m_number; }
                set { m_number = value; }
            }

            public int MyMethod(int multiplier)
            {
                return m_number * multiplier;
            }
        }
        */

        var aName = new AssemblyName("DynamicAssemblyExample");
        AssemblyBuilder ab =
            AssemblyBuilder.DefineDynamicAssembly(
                aName,
                AssemblyBuilderAccess.Run);

        // The module name is usually the same as the assembly name.
        ModuleBuilder mb = ab.DefineDynamicModule(aName.Name ?? "DynamicAssemblyExample");

        TypeBuilder tb = mb.DefineType(
            "MyDynamicType",
             TypeAttributes.Public);

        // Add a private field of type int (Int32).
        FieldBuilder fbNumber = tb.DefineField(
            "m_number",
            typeof(int),
            FieldAttributes.Private);

        // Define a constructor that takes an integer argument and
        // stores it in the private field.
        Type[] parameterTypes = { typeof(int) };
        ConstructorBuilder ctor1 = tb.DefineConstructor(
            MethodAttributes.Public,
            CallingConventions.Standard,
            parameterTypes);

        ILGenerator ctor1IL = ctor1.GetILGenerator();
        // For a constructor, argument zero is a reference to the new
        // instance. Push it on the stack before calling the base
        // class constructor. Specify the default constructor of the
        // base class (System.Object) by passing an empty array of
        // types (Type.EmptyTypes) to GetConstructor.
        ctor1IL.Emit(OpCodes.Ldarg_0);
        ConstructorInfo? ci = typeof(object).GetConstructor(Type.EmptyTypes);
        ctor1IL.Emit(OpCodes.Call, ci!);
        // Push the instance on the stack before pushing the argument
        // that is to be assigned to the private field m_number.
        ctor1IL.Emit(OpCodes.Ldarg_0);
        ctor1IL.Emit(OpCodes.Ldarg_1);
        ctor1IL.Emit(OpCodes.Stfld, fbNumber);
        ctor1IL.Emit(OpCodes.Ret);

        // Define a default constructor that supplies a default value
        // for the private field. For parameter types, pass the empty
        // array of types or pass null.
        ConstructorBuilder ctor0 = tb.DefineConstructor(
            MethodAttributes.Public,
            CallingConventions.Standard,
            Type.EmptyTypes);

        ILGenerator ctor0IL = ctor0.GetILGenerator();
        // For a constructor, argument zero is a reference to the new
        // instance. Push it on the stack before pushing the default
        // value on the stack, then call constructor ctor1.
        ctor0IL.Emit(OpCodes.Ldarg_0);
        ctor0IL.Emit(OpCodes.Ldc_I4_S, 42);
        ctor0IL.Emit(OpCodes.Call, ctor1);
        ctor0IL.Emit(OpCodes.Ret);

        // Define a property named Number that gets and sets the private
        // field.
        //
        // The last argument of DefineProperty is null, because the
        // property has no parameters. (If you don't specify null, you must
        // specify an array of Type objects. For a parameterless property,
        // use the built-in array with no elements: Type.EmptyTypes)
        PropertyBuilder pbNumber = tb.DefineProperty(
            "Number",
            PropertyAttributes.HasDefault,
            typeof(int),
            null);

        // The property "set" and property "get" methods require a special
        // set of attributes.
        MethodAttributes getSetAttr = MethodAttributes.Public |
            MethodAttributes.SpecialName | MethodAttributes.HideBySig;

        // Define the "get" accessor method for Number. The method returns
        // an integer and has no arguments. (Note that null could be
        // used instead of Types.EmptyTypes)
        MethodBuilder mbNumberGetAccessor = tb.DefineMethod(
            "get_Number",
            getSetAttr,
            typeof(int),
            Type.EmptyTypes);

        ILGenerator numberGetIL = mbNumberGetAccessor.GetILGenerator();
        // For an instance property, argument zero is the instance. Load the
        // instance, then load the private field and return, leaving the
        // field value on the stack.
        numberGetIL.Emit(OpCodes.Ldarg_0);
        numberGetIL.Emit(OpCodes.Ldfld, fbNumber);
        numberGetIL.Emit(OpCodes.Ret);

        // Define the "set" accessor method for Number, which has no return
        // type and takes one argument of type int (Int32).
        MethodBuilder mbNumberSetAccessor = tb.DefineMethod(
            "set_Number",
            getSetAttr,
            null,
            new Type[] { typeof(int) });

        ILGenerator numberSetIL = mbNumberSetAccessor.GetILGenerator();
        // Load the instance and then the numeric argument, then store the
        // argument in the field.
        numberSetIL.Emit(OpCodes.Ldarg_0);
        numberSetIL.Emit(OpCodes.Ldarg_1);
        numberSetIL.Emit(OpCodes.Stfld, fbNumber);
        numberSetIL.Emit(OpCodes.Ret);

        // Last, map the "get" and "set" accessor methods to the
        // PropertyBuilder. The property is now complete.
        pbNumber.SetGetMethod(mbNumberGetAccessor);
        pbNumber.SetSetMethod(mbNumberSetAccessor);

        // Define a method that accepts an integer argument and returns
        // the product of that integer and the private field m_number. This
        // time, the array of parameter types is created on the fly.
        MethodBuilder meth = tb.DefineMethod(
            "MyMethod",
            MethodAttributes.Public,
            typeof(int),
            new Type[] { typeof(int) });

        ILGenerator methIL = meth.GetILGenerator();
        // To retrieve the private instance field, load the instance it
        // belongs to (argument zero). After loading the field, load the
        // argument one and then multiply. Return from the method with
        // the return value (the product of the two numbers) on the
        // execution stack.
        methIL.Emit(OpCodes.Ldarg_0);
        methIL.Emit(OpCodes.Ldfld, fbNumber);
        methIL.Emit(OpCodes.Ldarg_1);
        methIL.Emit(OpCodes.Mul);
        methIL.Emit(OpCodes.Ret);

        // Finish the type.
        Type? t = tb.CreateType();

        // Because AssemblyBuilderAccess includes Run, the code can be
        // executed immediately. Start by getting reflection objects for
        // the method and the property.
        MethodInfo? mi = t?.GetMethod("MyMethod");
        PropertyInfo? pi = t?.GetProperty("Number");

        // Create an instance of MyDynamicType using the default
        // constructor.
        object? o1 = null;
        if (t is not null)
            o1 = Activator.CreateInstance(t);

        // Display the value of the property, then change it to 127 and
        // display it again. Use null to indicate that the property
        // has no index.
        Console.WriteLine("o1.Number: {0}", pi?.GetValue(o1, null));
        pi?.SetValue(o1, 127, null);
        Console.WriteLine("o1.Number: {0}", pi?.GetValue(o1, null));

        // Call MyMethod, passing 22, and display the return value, 22
        // times 127. Arguments must be passed as an array, even when
        // there is only one.
        object[] arguments = { 22 };
        Console.WriteLine("o1.MyMethod(22): {0}",
            mi?.Invoke(o1, arguments));

        // Create an instance of MyDynamicType using the constructor
        // that specifies m_Number. The constructor is identified by
        // matching the types in the argument array. In this case,
        // the argument array is created on the fly. Display the
        // property value.
        object? o2 = null;
        if (t is not null)
            o2 = Activator.CreateInstance(t, new object[] { 5280 });
        Console.WriteLine("o2.Number: {0}", pi?.GetValue(o2, null));
    }
}

/* This code produces the following output:

o1.Number: 42
o1.Number: 127
o1.MyMethod(22): 2794
o2.Number: 5280
 */
Imports System.Reflection
Imports System.Reflection.Emit

Class DemoAssemblyBuilder

    Public Shared Sub Main()

        ' This code creates an assembly that contains one type,
        ' named "MyDynamicType", that has a private field, a property
        ' that gets and sets the private field, constructors that
        ' initialize the private field, and a method that multiplies
        ' a user-supplied number by the private field value and returns
        ' the result. The code might look like this in Visual Basic:
        '
        'Public Class MyDynamicType
        '    Private m_number As Integer
        '
        '    Public Sub New()
        '        Me.New(42)
        '    End Sub
        '
        '    Public Sub New(ByVal initNumber As Integer)
        '        m_number = initNumber
        '    End Sub
        '
        '    Public Property Number As Integer
        '        Get
        '            Return m_number
        '        End Get
        '        Set
        '            m_Number = Value
        '        End Set
        '    End Property
        '
        '    Public Function MyMethod(ByVal multiplier As Integer) As Integer
        '        Return m_Number * multiplier
        '    End Function
        'End Class
      
        Dim aName As New AssemblyName("DynamicAssemblyExample")
        Dim ab As AssemblyBuilder = _
            AssemblyBuilder.DefineDynamicAssembly( _
                aName, _
                AssemblyBuilderAccess.Run)

        ' The module name is usually the same as the assembly name.
        Dim mb As ModuleBuilder = ab.DefineDynamicModule( _
            aName.Name)
      
        Dim tb As TypeBuilder = _
            mb.DefineType("MyDynamicType", TypeAttributes.Public)

        ' Add a private field of type Integer (Int32).
        Dim fbNumber As FieldBuilder = tb.DefineField( _
            "m_number", _
            GetType(Integer), _
            FieldAttributes.Private)

        ' Define a constructor that takes an integer argument and 
        ' stores it in the private field. 
        Dim parameterTypes() As Type = { GetType(Integer) }
        Dim ctor1 As ConstructorBuilder = _
            tb.DefineConstructor( _
                MethodAttributes.Public, _
                CallingConventions.Standard, _
                parameterTypes)

        Dim ctor1IL As ILGenerator = ctor1.GetILGenerator()
        ' For a constructor, argument zero is a reference to the new
        ' instance. Push it on the stack before calling the base
        ' class constructor. Specify the default constructor of the 
        ' base class (System.Object) by passing an empty array of 
        ' types (Type.EmptyTypes) to GetConstructor.
        ctor1IL.Emit(OpCodes.Ldarg_0)
        ctor1IL.Emit(OpCodes.Call, _
            GetType(Object).GetConstructor(Type.EmptyTypes))
        ' Push the instance on the stack before pushing the argument
        ' that is to be assigned to the private field m_number.
        ctor1IL.Emit(OpCodes.Ldarg_0)
        ctor1IL.Emit(OpCodes.Ldarg_1)
        ctor1IL.Emit(OpCodes.Stfld, fbNumber)
        ctor1IL.Emit(OpCodes.Ret)

        ' Define a default constructor that supplies a default value
        ' for the private field. For parameter types, pass the empty
        ' array of types or pass Nothing.
        Dim ctor0 As ConstructorBuilder = tb.DefineConstructor( _
            MethodAttributes.Public, _
            CallingConventions.Standard, _
            Type.EmptyTypes)

        Dim ctor0IL As ILGenerator = ctor0.GetILGenerator()
        ' For a constructor, argument zero is a reference to the new
        ' instance. Push it on the stack before pushing the default
        ' value on the stack, then call constructor ctor1.
        ctor0IL.Emit(OpCodes.Ldarg_0)
        ctor0IL.Emit(OpCodes.Ldc_I4_S, 42)
        ctor0IL.Emit(OpCodes.Call, ctor1)
        ctor0IL.Emit(OpCodes.Ret)

        ' Define a property named Number that gets and sets the private 
        ' field.
        '
        ' The last argument of DefineProperty is Nothing, because the
        ' property has no parameters. (If you don't specify Nothing, you must
        ' specify an array of Type objects. For a parameterless property,
        ' use the built-in array with no elements: Type.EmptyTypes)
        Dim pbNumber As PropertyBuilder = tb.DefineProperty( _
            "Number", _
            PropertyAttributes.HasDefault, _
            GetType(Integer), _
            Nothing)
      
        ' The property Set and property Get methods require a special
        ' set of attributes.
        Dim getSetAttr As MethodAttributes = _
            MethodAttributes.Public Or MethodAttributes.SpecialName _
                Or MethodAttributes.HideBySig

        ' Define the "get" accessor method for Number. The method returns
        ' an integer and has no arguments. (Note that Nothing could be 
        ' used instead of Types.EmptyTypes)
        Dim mbNumberGetAccessor As MethodBuilder = tb.DefineMethod( _
            "get_Number", _
            getSetAttr, _
            GetType(Integer), _
            Type.EmptyTypes)
      
        Dim numberGetIL As ILGenerator = mbNumberGetAccessor.GetILGenerator()
        ' For an instance property, argument zero is the instance. Load the 
        ' instance, then load the private field and return, leaving the
        ' field value on the stack.
        numberGetIL.Emit(OpCodes.Ldarg_0)
        numberGetIL.Emit(OpCodes.Ldfld, fbNumber)
        numberGetIL.Emit(OpCodes.Ret)
        
        ' Define the "set" accessor method for Number, which has no return
        ' type and takes one argument of type Integer (Int32).
        Dim mbNumberSetAccessor As MethodBuilder = _
            tb.DefineMethod( _
                "set_Number", _
                getSetAttr, _
                Nothing, _
                New Type() { GetType(Integer) })
      
        Dim numberSetIL As ILGenerator = mbNumberSetAccessor.GetILGenerator()
        ' Load the instance and then the numeric argument, then store the
        ' argument in the field.
        numberSetIL.Emit(OpCodes.Ldarg_0)
        numberSetIL.Emit(OpCodes.Ldarg_1)
        numberSetIL.Emit(OpCodes.Stfld, fbNumber)
        numberSetIL.Emit(OpCodes.Ret)
      
        ' Last, map the "get" and "set" accessor methods to the 
        ' PropertyBuilder. The property is now complete. 
        pbNumber.SetGetMethod(mbNumberGetAccessor)
        pbNumber.SetSetMethod(mbNumberSetAccessor)

        ' Define a method that accepts an integer argument and returns
        ' the product of that integer and the private field m_number. This
        ' time, the array of parameter types is created on the fly.
        Dim meth As MethodBuilder = tb.DefineMethod( _
            "MyMethod", _
            MethodAttributes.Public, _
            GetType(Integer), _
            New Type() { GetType(Integer) })

        Dim methIL As ILGenerator = meth.GetILGenerator()
        ' To retrieve the private instance field, load the instance it
        ' belongs to (argument zero). After loading the field, load the 
        ' argument one and then multiply. Return from the method with 
        ' the return value (the product of the two numbers) on the 
        ' execution stack.
        methIL.Emit(OpCodes.Ldarg_0)
        methIL.Emit(OpCodes.Ldfld, fbNumber)
        methIL.Emit(OpCodes.Ldarg_1)
        methIL.Emit(OpCodes.Mul)
        methIL.Emit(OpCodes.Ret)

        ' Finish the type.
        Dim t As Type = tb.CreateType()

        ' Because AssemblyBuilderAccess includes Run, the code can be
        ' executed immediately. Start by getting reflection objects for
        ' the method and the property.
        Dim mi As MethodInfo = t.GetMethod("MyMethod")
        Dim pi As PropertyInfo = t.GetProperty("Number")
  
        ' Create an instance of MyDynamicType using the default 
        ' constructor. 
        Dim o1 As Object = Activator.CreateInstance(t)

        ' Display the value of the property, then change it to 127 and 
        ' display it again. Use Nothing to indicate that the property
        ' has no index.
        Console.WriteLine("o1.Number: {0}", pi.GetValue(o1, Nothing))
        pi.SetValue(o1, 127, Nothing)
        Console.WriteLine("o1.Number: {0}", pi.GetValue(o1, Nothing))

        ' Call MyMethod, passing 22, and display the return value, 22
        ' times 127. Arguments must be passed as an array, even when
        ' there is only one.
        Dim arguments() As Object = { 22 }
        Console.WriteLine("o1.MyMethod(22): {0}", _
            mi.Invoke(o1, arguments))

        ' Create an instance of MyDynamicType using the constructor
        ' that specifies m_Number. The constructor is identified by
        ' matching the types in the argument array. In this case, 
        ' the argument array is created on the fly. Display the 
        ' property value.
        Dim o2 As Object = Activator.CreateInstance(t, _
            New Object() { 5280 })
        Console.WriteLine("o2.Number: {0}", pi.GetValue(o2, Nothing))
      
    End Sub  
End Class

' This code produces the following output:
'
'o1.Number: 42
'o1.Number: 127
'o1.MyMethod(22): 2794
'o2.Number: 5280

The following code sample demonstrates how to build a type dynamically by using TypeBuilder.

using namespace System;
using namespace System::Threading;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
Type^ DynamicDotProductGen()
{
   Type^ ivType = nullptr;
   array<Type^>^temp0 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^ctorParams = temp0;
   AppDomain^ myDomain = Thread::GetDomain();
   AssemblyName^ myAsmName = gcnew AssemblyName;
   myAsmName->Name = "IntVectorAsm";
   AssemblyBuilder^ myAsmBuilder = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::RunAndSave );
   ModuleBuilder^ IntVectorModule = myAsmBuilder->DefineDynamicModule( "IntVectorModule", "Vector.dll" );
   TypeBuilder^ ivTypeBld = IntVectorModule->DefineType( "IntVector", TypeAttributes::Public );
   FieldBuilder^ xField = ivTypeBld->DefineField( "x", int::typeid, FieldAttributes::Private );
   FieldBuilder^ yField = ivTypeBld->DefineField( "y", int::typeid, FieldAttributes::Private );
   FieldBuilder^ zField = ivTypeBld->DefineField( "z", int::typeid, FieldAttributes::Private );
   Type^ objType = Type::GetType( "System.Object" );
   ConstructorInfo^ objCtor = objType->GetConstructor( gcnew array<Type^>(0) );
   ConstructorBuilder^ ivCtor = ivTypeBld->DefineConstructor( MethodAttributes::Public, CallingConventions::Standard, ctorParams );
   ILGenerator^ ctorIL = ivCtor->GetILGenerator();
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Call, objCtor );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_1 );
   ctorIL->Emit( OpCodes::Stfld, xField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_2 );
   ctorIL->Emit( OpCodes::Stfld, yField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_3 );
   ctorIL->Emit( OpCodes::Stfld, zField );
   ctorIL->Emit( OpCodes::Ret );
   
   // This method will find the dot product of the stored vector
   // with another.
   array<Type^>^temp1 = {ivTypeBld};
   array<Type^>^dpParams = temp1;
   
   // Here, you create a MethodBuilder containing the
   // name, the attributes (public, static, private, and so on),
   // the return type (int, in this case), and a array of Type
   // indicating the type of each parameter. Since the sole parameter
   // is a IntVector, the very class you're creating, you will
   // pass in the TypeBuilder (which is derived from Type) instead of
   // a Type object for IntVector, avoiding an exception.
   // -- This method would be declared in C# as:
   //    public int DotProduct(IntVector aVector)
   MethodBuilder^ dotProductMthd = ivTypeBld->DefineMethod( "DotProduct", MethodAttributes::Public, int::typeid, dpParams );
   
   // A ILGenerator can now be spawned, attached to the MethodBuilder.
   ILGenerator^ mthdIL = dotProductMthd->GetILGenerator();
   
   // Here's the body of our function, in MSIL form. We're going to find the
   // "dot product" of the current vector instance with the passed vector
   // instance. For reference purposes, the equation is:
   // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
   // First, you'll load the reference to the current instance "this"
   // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
   // instruction, will pop the reference off the stack and look up the
   // field "x", specified by the FieldInfo token "xField".
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // That completed, the value stored at field "x" is now atop the stack.
   // Now, you'll do the same for the Object reference we passed as a
   // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
   // you'll have the value stored in field "x" for the passed instance
   // atop the stack.
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // There will now be two values atop the stack - the "x" value for the
   // current vector instance, and the "x" value for the passed instance.
   // You'll now multiply them, and push the result onto the evaluation stack.
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Now, repeat this for the "y" fields of both vectors.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // At this time, the results of both multiplications should be atop
   // the stack. You'll now add them and push the result onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // Multiply both "z" field and push the result onto the stack.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Finally, add the result of multiplying the "z" fields with the
   // result of the earlier addition, and push the result - the dot product -
   // onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // The "ret" opcode will pop the last value from the stack and return it
   // to the calling method. You're all done!
   mthdIL->Emit( OpCodes::Ret );
   ivType = ivTypeBld->CreateType();
   return ivType;
}

int main()
{
   Type^ IVType = nullptr;
   Object^ aVector1 = nullptr;
   Object^ aVector2 = nullptr;
   array<Type^>^temp2 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^aVtypes = temp2;
   array<Object^>^temp3 = {10,10,10};
   array<Object^>^aVargs1 = temp3;
   array<Object^>^temp4 = {20,20,20};
   array<Object^>^aVargs2 = temp4;
   
   // Call the  method to build our dynamic class.
   IVType = DynamicDotProductGen();
   Console::WriteLine( "---" );
   ConstructorInfo^ myDTctor = IVType->GetConstructor( aVtypes );
   aVector1 = myDTctor->Invoke( aVargs1 );
   aVector2 = myDTctor->Invoke( aVargs2 );
   array<Object^>^passMe = gcnew array<Object^>(1);
   passMe[ 0 ] = dynamic_cast<Object^>(aVector2);
   Console::WriteLine( "(10, 10, 10) . (20, 20, 20) = {0}", IVType->InvokeMember( "DotProduct", BindingFlags::InvokeMethod, nullptr, aVector1, passMe ) );
}

// +++ OUTPUT +++
// ---
// (10, 10, 10) . (20, 20, 20) = 600
using System;
using System.Threading;
using System.Reflection;
using System.Reflection.Emit;

class TestILGenerator
{
    public static Type DynamicDotProductGen()
    {
       Type ivType = null;
       Type[] ctorParams = new Type[] { typeof(int),
                                typeof(int),
                        typeof(int)};
    
       AppDomain myDomain = Thread.GetDomain();
       AssemblyName myAsmName = new AssemblyName();
       myAsmName.Name = "IntVectorAsm";
    
       AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly(
                      myAsmName,
                      AssemblyBuilderAccess.RunAndSave);

       ModuleBuilder IntVectorModule = myAsmBuilder.DefineDynamicModule("IntVectorModule",
                                        "Vector.dll");

       TypeBuilder ivTypeBld = IntVectorModule.DefineType("IntVector",
                                      TypeAttributes.Public);

       FieldBuilder xField = ivTypeBld.DefineField("x", typeof(int),
                                                       FieldAttributes.Private);
       FieldBuilder yField = ivTypeBld.DefineField("y", typeof(int),
                                                       FieldAttributes.Private);
       FieldBuilder zField = ivTypeBld.DefineField("z", typeof(int),
                                                       FieldAttributes.Private);

           Type objType = Type.GetType("System.Object");
           ConstructorInfo objCtor = objType.GetConstructor(new Type[0]);

       ConstructorBuilder ivCtor = ivTypeBld.DefineConstructor(
                      MethodAttributes.Public,
                      CallingConventions.Standard,
                      ctorParams);
       ILGenerator ctorIL = ivCtor.GetILGenerator();
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Call, objCtor);
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_1);
           ctorIL.Emit(OpCodes.Stfld, xField);
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_2);
           ctorIL.Emit(OpCodes.Stfld, yField);
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_3);
           ctorIL.Emit(OpCodes.Stfld, zField);
       ctorIL.Emit(OpCodes.Ret);

       // This method will find the dot product of the stored vector
       // with another.

       Type[] dpParams = new Type[] { ivTypeBld };

           // Here, you create a MethodBuilder containing the
       // name, the attributes (public, static, private, and so on),
       // the return type (int, in this case), and a array of Type
       // indicating the type of each parameter. Since the sole parameter
       // is a IntVector, the very class you're creating, you will
       // pass in the TypeBuilder (which is derived from Type) instead of
       // a Type object for IntVector, avoiding an exception.

       // -- This method would be declared in C# as:
       //    public int DotProduct(IntVector aVector)

           MethodBuilder dotProductMthd = ivTypeBld.DefineMethod(
                                  "DotProduct",
                          MethodAttributes.Public,
                                          typeof(int),
                                          dpParams);

       // A ILGenerator can now be spawned, attached to the MethodBuilder.

       ILGenerator mthdIL = dotProductMthd.GetILGenerator();
    
       // Here's the body of our function, in MSIL form. We're going to find the
       // "dot product" of the current vector instance with the passed vector
       // instance. For reference purposes, the equation is:
       // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product

       // First, you'll load the reference to the current instance "this"
       // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
       // instruction, will pop the reference off the stack and look up the
       // field "x", specified by the FieldInfo token "xField".

       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, xField);

       // That completed, the value stored at field "x" is now atop the stack.
       // Now, you'll do the same for the object reference we passed as a
       // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
       // you'll have the value stored in field "x" for the passed instance
       // atop the stack.

       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, xField);

           // There will now be two values atop the stack - the "x" value for the
       // current vector instance, and the "x" value for the passed instance.
       // You'll now multiply them, and push the result onto the evaluation stack.

       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // Now, repeat this for the "y" fields of both vectors.

       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, yField);
       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, yField);
       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // At this time, the results of both multiplications should be atop
       // the stack. You'll now add them and push the result onto the stack.

       mthdIL.Emit(OpCodes.Add_Ovf_Un);

       // Multiply both "z" field and push the result onto the stack.
       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, zField);
       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, zField);
       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // Finally, add the result of multiplying the "z" fields with the
       // result of the earlier addition, and push the result - the dot product -
       // onto the stack.
       mthdIL.Emit(OpCodes.Add_Ovf_Un);

       // The "ret" opcode will pop the last value from the stack and return it
       // to the calling method. You're all done!

       mthdIL.Emit(OpCodes.Ret);

       ivType = ivTypeBld.CreateType();

       return ivType;
    }

    public static void Main() {
    
       Type IVType = null;
           object aVector1 = null;
           object aVector2 = null;
       Type[] aVtypes = new Type[] {typeof(int), typeof(int), typeof(int)};
           object[] aVargs1 = new object[] {10, 10, 10};
           object[] aVargs2 = new object[] {20, 20, 20};
    
       // Call the  method to build our dynamic class.

       IVType = DynamicDotProductGen();

           Console.WriteLine("---");

       ConstructorInfo myDTctor = IVType.GetConstructor(aVtypes);
       aVector1 = myDTctor.Invoke(aVargs1);
       aVector2 = myDTctor.Invoke(aVargs2);

       object[] passMe = new object[1];
           passMe[0] = (object)aVector2;

       Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}",
                 IVType.InvokeMember("DotProduct",
                          BindingFlags.InvokeMethod,
                          null,
                          aVector1,
                          passMe));

       // +++ OUTPUT +++
       // ---
       // (10, 10, 10) . (20, 20, 20) = 600
    }
}
Imports System.Threading
Imports System.Reflection
Imports System.Reflection.Emit

 _


Class TestILGenerator
   
   
   Public Shared Function DynamicDotProductGen() As Type
      
      Dim ivType As Type = Nothing
      Dim ctorParams() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      
      Dim myDomain As AppDomain = Thread.GetDomain()
      Dim myAsmName As New AssemblyName()
      myAsmName.Name = "IntVectorAsm"
      
      Dim myAsmBuilder As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
                        myAsmName, _
                        AssemblyBuilderAccess.RunAndSave)
      
      Dim IntVectorModule As ModuleBuilder = myAsmBuilder.DefineDynamicModule( _
                         "IntVectorModule", _
                         "Vector.dll")
      
      Dim ivTypeBld As TypeBuilder = IntVectorModule.DefineType("IntVector", TypeAttributes.Public)
      
      Dim xField As FieldBuilder = ivTypeBld.DefineField("x", _
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      Dim yField As FieldBuilder = ivTypeBld.DefineField("y", _ 
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      Dim zField As FieldBuilder = ivTypeBld.DefineField("z", _
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      
      
      Dim objType As Type = Type.GetType("System.Object")
      Dim objCtor As ConstructorInfo = objType.GetConstructor(New Type() {})
      
      Dim ivCtor As ConstructorBuilder = ivTypeBld.DefineConstructor( _
                     MethodAttributes.Public, _
                     CallingConventions.Standard, _
                     ctorParams)
      Dim ctorIL As ILGenerator = ivCtor.GetILGenerator()
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Call, objCtor)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_1)
      ctorIL.Emit(OpCodes.Stfld, xField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_2)
      ctorIL.Emit(OpCodes.Stfld, yField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_3)
      ctorIL.Emit(OpCodes.Stfld, zField)
      ctorIL.Emit(OpCodes.Ret)
     

      ' Now, you'll construct the method find the dot product of two vectors. First,
      ' let's define the parameters that will be accepted by the method. In this case,
      ' it's an IntVector itself!

      Dim dpParams() As Type = {ivTypeBld}
      
      ' Here, you create a MethodBuilder containing the
      ' name, the attributes (public, static, private, and so on),
      ' the return type (int, in this case), and a array of Type
      ' indicating the type of each parameter. Since the sole parameter
      ' is a IntVector, the very class you're creating, you will
      ' pass in the TypeBuilder (which is derived from Type) instead of 
      ' a Type object for IntVector, avoiding an exception. 
      ' -- This method would be declared in VB.NET as:
      '    Public Function DotProduct(IntVector aVector) As Integer

      Dim dotProductMthd As MethodBuilder = ivTypeBld.DefineMethod("DotProduct", _
                        MethodAttributes.Public, GetType(Integer), _
                                            dpParams)
      
      ' A ILGenerator can now be spawned, attached to the MethodBuilder.
      Dim mthdIL As ILGenerator = dotProductMthd.GetILGenerator()
      
      ' Here's the body of our function, in MSIL form. We're going to find the
      ' "dot product" of the current vector instance with the passed vector 
      ' instance. For reference purposes, the equation is:
      ' (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
      ' First, you'll load the reference to the current instance "this"
      ' stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
      ' instruction, will pop the reference off the stack and look up the
      ' field "x", specified by the FieldInfo token "xField".
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' That completed, the value stored at field "x" is now atop the stack.
      ' Now, you'll do the same for the object reference we passed as a
      ' parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
      ' you'll have the value stored in field "x" for the passed instance
      ' atop the stack.
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' There will now be two values atop the stack - the "x" value for the
      ' current vector instance, and the "x" value for the passed instance.
      ' You'll now multiply them, and push the result onto the evaluation stack.
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Now, repeat this for the "y" fields of both vectors.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' At this time, the results of both multiplications should be atop
      ' the stack. You'll now add them and push the result onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' Multiply both "z" field and push the result onto the stack.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Finally, add the result of multiplying the "z" fields with the
      ' result of the earlier addition, and push the result - the dot product -
      ' onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' The "ret" opcode will pop the last value from the stack and return it
      ' to the calling method. You're all done!
      mthdIL.Emit(OpCodes.Ret)
      
      
      ivType = ivTypeBld.CreateType()
      
      Return ivType
   End Function 'DynamicDotProductGen
    
   
   Public Shared Sub Main()
      
      Dim IVType As Type = Nothing
      Dim aVector1 As Object = Nothing
      Dim aVector2 As Object = Nothing
      Dim aVtypes() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      Dim aVargs1() As Object = {10, 10, 10}
      Dim aVargs2() As Object = {20, 20, 20}
      
      ' Call the  method to build our dynamic class.
      IVType = DynamicDotProductGen()
      
      
      Dim myDTctor As ConstructorInfo = IVType.GetConstructor(aVtypes)
      aVector1 = myDTctor.Invoke(aVargs1)
      aVector2 = myDTctor.Invoke(aVargs2)
      
      Console.WriteLine("---")
      Dim passMe(0) As Object
      passMe(0) = CType(aVector2, Object)
      
      Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}", _
                        IVType.InvokeMember("DotProduct", BindingFlags.InvokeMethod, _
                        Nothing, aVector1, passMe))
   End Sub
End Class



' +++ OUTPUT +++
' ---
' (10, 10, 10) . (20, 20, 20) = 600

Remarks

For more information about this API, see Supplemental API remarks for TypeBuilder.

Constructors

TypeBuilder()

Initializes a new instance of the TypeBuilder class.

Fields

UnspecifiedTypeSize

Represents that total size for the type is not specified.

Properties

Assembly

Retrieves the dynamic assembly that contains this type definition.

AssemblyQualifiedName

Returns the full name of this type qualified by the display name of the assembly.

Attributes
Attributes

Gets the attributes associated with the Type.

(Inherited from Type)
Attributes (Inherited from TypeInfo)
BaseType

Retrieves the base type of this type.

ContainsGenericParameters
ContainsGenericParameters

Gets a value indicating whether the current Type object has type parameters that have not been replaced by specific types.

(Inherited from Type)
ContainsGenericParameters (Inherited from TypeInfo)
CustomAttributes

Gets a collection that contains this member's custom attributes.

(Inherited from MemberInfo)
DeclaredConstructors

Gets a collection of the constructors declared by the current type.

(Inherited from TypeInfo)
DeclaredEvents

Gets a collection of the events defined by the current type.

(Inherited from TypeInfo)
DeclaredFields

Gets a collection of the fields defined by the current type.

(Inherited from TypeInfo)
DeclaredMembers

Gets a collection of the members defined by the current type.

(Inherited from TypeInfo)
DeclaredMethods

Gets a collection of the methods defined by the current type.

(Inherited from TypeInfo)
DeclaredNestedTypes

Gets a collection of the nested types defined by the current type.

(Inherited from TypeInfo)
DeclaredProperties

Gets a collection of the properties defined by the current type.

(Inherited from TypeInfo)
DeclaringMethod

Gets the method that declared the current generic type parameter.

DeclaringMethod

Gets a MethodBase that represents the declaring method, if the current Type represents a type parameter of a generic method.

(Inherited from Type)
DeclaringType

Returns the type that declared this type.

FullName

Retrieves the full path of this type.

GenericParameterAttributes

Gets a value that indicates the covariance and special constraints of the current generic type parameter.

GenericParameterAttributes

Gets a combination of GenericParameterAttributes flags that describe the covariance and special constraints of the current generic type parameter.

(Inherited from Type)
GenericParameterPosition

Gets the position of a type parameter in the type parameter list of the generic type that declared the parameter.

GenericParameterPosition

Gets the position of the type parameter in the type parameter list of the generic type or method that declared the parameter, when the Type object represents a type parameter of a generic type or a generic method.

(Inherited from Type)
GenericTypeArguments
GenericTypeArguments

Gets an array of the generic type arguments for this type.

(Inherited from Type)
GenericTypeArguments (Inherited from TypeInfo)
GenericTypeParameters

Gets an array of the generic type parameters of the current instance.

(Inherited from TypeInfo)
GUID

Retrieves the GUID of this type.

HasElementType

Gets a value indicating whether the current Type encompasses or refers to another type; that is, whether the current Type is an array, a pointer, or is passed by reference.

(Inherited from Type)
HasElementType (Inherited from TypeInfo)
ImplementedInterfaces

Gets a collection of the interfaces implemented by the current type.

(Inherited from TypeInfo)
IsAbstract

Gets a value indicating whether the Type is abstract and must be overridden.

(Inherited from Type)
IsAbstract (Inherited from TypeInfo)
IsAnsiClass

Gets a value indicating whether the string format attribute AnsiClass is selected for the Type.

(Inherited from Type)
IsAnsiClass (Inherited from TypeInfo)
IsArray

Gets a value that indicates whether the type is an array.

(Inherited from Type)
IsArray (Inherited from TypeInfo)
IsAutoClass

Gets a value indicating whether the string format attribute AutoClass is selected for the Type.

(Inherited from Type)
IsAutoClass (Inherited from TypeInfo)
IsAutoLayout

Gets a value indicating whether the fields of the current type are laid out automatically by the common language runtime.

(Inherited from Type)
IsAutoLayout (Inherited from TypeInfo)
IsByRef

Gets a value indicating whether the Type is passed by reference.

(Inherited from Type)
IsByRef (Inherited from TypeInfo)
IsByRefLike

Gets a value that indicates whether the type is a byref-like structure.

IsByRefLike

Gets a value that indicates whether the type is a byref-like structure.

(Inherited from Type)
IsClass

Gets a value indicating whether the Type is a class or a delegate; that is, not a value type or interface.

(Inherited from Type)
IsClass (Inherited from TypeInfo)
IsCollectible

Gets a value that indicates whether this MemberInfo object is part of an assembly held in a collectible AssemblyLoadContext.

(Inherited from MemberInfo)
IsCOMObject

Gets a value indicating whether the Type is a COM object.

(Inherited from Type)
IsCOMObject (Inherited from TypeInfo)
IsConstructedGenericType

Gets a value that indicates whether this object represents a constructed generic type.

IsConstructedGenericType

Gets a value that indicates whether this object represents a constructed generic type. You can create instances of a constructed generic type.

(Inherited from Type)
IsContextful

Gets a value indicating whether the Type can be hosted in a context.

(Inherited from Type)
IsEnum
IsEnum

Gets a value indicating whether the current Type represents an enumeration.

(Inherited from Type)
IsEnum (Inherited from TypeInfo)
IsExplicitLayout

Gets a value indicating whether the fields of the current type are laid out at explicitly specified offsets.

(Inherited from Type)
IsExplicitLayout (Inherited from TypeInfo)
IsFunctionPointer

Gets a value that indicates whether the current Type is a function pointer.

(Inherited from Type)
IsGenericMethodParameter

Gets a value that indicates whether the current Type represents a type parameter in the definition of a generic method.

(Inherited from Type)
IsGenericParameter

Gets a value indicating whether the current type is a generic type parameter.

IsGenericParameter

Gets a value indicating whether the current Type represents a type parameter in the definition of a generic type or method.

(Inherited from Type)
IsGenericType

Gets a value indicating whether the current type is a generic type.

IsGenericType

Gets a value indicating whether the current type is a generic type.

(Inherited from Type)
IsGenericTypeDefinition

Gets a value indicating whether the current TypeBuilder represents a generic type definition from which other generic types can be constructed.

IsGenericTypeDefinition

Gets a value indicating whether the current Type represents a generic type definition, from which other generic types can be constructed.

(Inherited from Type)
IsGenericTypeParameter

Gets a value that indicates whether the current Type represents a type parameter in the definition of a generic type.

(Inherited from Type)
IsImport

Gets a value indicating whether the Type has a ComImportAttribute attribute applied, indicating that it was imported from a COM type library.

(Inherited from Type)
IsImport (Inherited from TypeInfo)
IsInterface

Gets a value indicating whether the Type is an interface; that is, not a class or a value type.

(Inherited from Type)
IsInterface (Inherited from TypeInfo)
IsLayoutSequential

Gets a value indicating whether the fields of the current type are laid out sequentially, in the order that they were defined or emitted to the metadata.

(Inherited from Type)
IsLayoutSequential (Inherited from TypeInfo)
IsMarshalByRef

Gets a value indicating whether the Type is marshaled by reference.

(Inherited from Type)
IsMarshalByRef (Inherited from TypeInfo)
IsNested

Gets a value indicating whether the current Type object represents a type whose definition is nested inside the definition of another type.

(Inherited from Type)
IsNested (Inherited from TypeInfo)
IsNestedAssembly

Gets a value indicating whether the Type is nested and visible only within its own assembly.

(Inherited from Type)
IsNestedAssembly (Inherited from TypeInfo)
IsNestedFamANDAssem

Gets a value indicating whether the Type is nested and visible only to classes that belong to both its own family and its own assembly.

(Inherited from Type)
IsNestedFamANDAssem (Inherited from TypeInfo)
IsNestedFamily

Gets a value indicating whether the Type is nested and visible only within its own family.

(Inherited from Type)
IsNestedFamily (Inherited from TypeInfo)
IsNestedFamORAssem

Gets a value indicating whether the Type is nested and visible only to classes that belong to either its own family or to its own assembly.

(Inherited from Type)
IsNestedFamORAssem (Inherited from TypeInfo)
IsNestedPrivate

Gets a value indicating whether the Type is nested and declared private.

(Inherited from Type)
IsNestedPrivate (Inherited from TypeInfo)
IsNestedPublic

Gets a value indicating whether a class is nested and declared public.

(Inherited from Type)
IsNestedPublic (Inherited from TypeInfo)
IsNotPublic

Gets a value indicating whether the Type is not declared public.

(Inherited from Type)
IsNotPublic (Inherited from TypeInfo)
IsPointer

Gets a value indicating whether the Type is a pointer.

(Inherited from Type)
IsPointer (Inherited from TypeInfo)
IsPrimitive

Gets a value indicating whether the Type is one of the primitive types.

(Inherited from Type)
IsPrimitive (Inherited from TypeInfo)
IsPublic

Gets a value indicating whether the Type is declared public.

(Inherited from Type)
IsPublic (Inherited from TypeInfo)
IsSealed

Gets a value indicating whether the Type is declared sealed.

(Inherited from Type)
IsSealed (Inherited from TypeInfo)
IsSecurityCritical

Gets a value that indicates whether the current type is security-critical or security-safe-critical, and therefore can perform critical operations.

IsSecurityCritical

Gets a value that indicates whether the current type is security-critical or security-safe-critical at the current trust level, and therefore can perform critical operations.

(Inherited from Type)
IsSecuritySafeCritical

Gets a value that indicates whether the current type is security-safe-critical; that is, whether it can perform critical operations and can be accessed by transparent code.

IsSecuritySafeCritical

Gets a value that indicates whether the current type is security-safe-critical at the current trust level; that is, whether it can perform critical operations and can be accessed by transparent code.

(Inherited from Type)
IsSecurityTransparent

Gets a value that indicates whether the current type is transparent, and therefore cannot perform critical operations.

IsSecurityTransparent

Gets a value that indicates whether the current type is transparent at the current trust level, and therefore cannot perform critical operations.

(Inherited from Type)
IsSerializable
IsSerializable
Obsolete.

Gets a value indicating whether the Type is binary serializable.

(Inherited from Type)
IsSerializable (Inherited from TypeInfo)
IsSignatureType

Gets a value that indicates whether the type is a signature type.

(Inherited from Type)
IsSpecialName

Gets a value indicating whether the type has a name that requires special handling.

(Inherited from Type)
IsSpecialName (Inherited from TypeInfo)
IsSZArray
IsSZArray

Gets a value that indicates whether the type is an array type that can represent only a single-dimensional array with a zero lower bound.

(Inherited from Type)
IsTypeDefinition
IsTypeDefinition

Gets a value that indicates whether the type is a type definition.

(Inherited from Type)
IsUnicodeClass

Gets a value indicating whether the string format attribute UnicodeClass is selected for the Type.

(Inherited from Type)
IsUnicodeClass (Inherited from TypeInfo)
IsUnmanagedFunctionPointer

Gets a value that indicates whether the current Type is an unmanaged function pointer.

(Inherited from Type)
IsValueType

Gets a value indicating whether the Type is a value type.

(Inherited from Type)
IsValueType (Inherited from TypeInfo)
IsVariableBoundArray
IsVariableBoundArray

Gets a value that indicates whether the type is an array type that can represent a multi-dimensional array or an array with an arbitrary lower bound.

(Inherited from Type)
IsVisible

Gets a value indicating whether the Type can be accessed by code outside the assembly.

(Inherited from Type)
IsVisible (Inherited from TypeInfo)
MemberType

Gets a MemberTypes value indicating that this member is a type or a nested type.

(Inherited from Type)
MemberType (Inherited from TypeInfo)
MetadataToken

Gets a token that identifies the current dynamic module in metadata.

MetadataToken

Gets a value that identifies a metadata element.

(Inherited from MemberInfo)
Module

Retrieves the dynamic module that contains this type definition.

Name

Retrieves the name of this type.

Namespace

Retrieves the namespace where this TypeBuilder is defined.

PackingSize

Retrieves the packing size of this type.

PackingSizeCore

When overridden in a derived class, gets the packing size of this type.

ReflectedType

Returns the type that was used to obtain this type.

ReflectedType

Gets the class object that was used to obtain this instance of MemberInfo.

(Inherited from MemberInfo)
Size

Retrieves the total size of a type.

SizeCore

When overridden in a derived class, gets the total size of a type.

StructLayoutAttribute

Gets a StructLayoutAttribute that describes the layout of the current type.

(Inherited from Type)
StructLayoutAttribute (Inherited from TypeInfo)
TypeHandle

Not supported in dynamic modules.

TypeInitializer

Gets the initializer for the type.

(Inherited from Type)
TypeInitializer (Inherited from TypeInfo)
TypeToken

Returns the type token of this type.

UnderlyingSystemType

Returns the underlying system type for this TypeBuilder.

UnderlyingSystemType (Inherited from TypeInfo)

Methods

AddDeclarativeSecurity(SecurityAction, PermissionSet)

Adds declarative security to this type.

AddInterfaceImplementation(Type)

Adds an interface that this type implements.

AddInterfaceImplementationCore(Type)

When overridden in a derived class, adds an interface that this type implements.

AsType()

Returns the current type as a Type object.

(Inherited from TypeInfo)
CreateType()

Creates a Type object for the class. After defining fields and methods on the class, CreateType is called in order to load its Type object.

CreateTypeInfo()

Gets a TypeInfo object that represents this type.

CreateTypeInfoCore()

When overridden in a derived class, gets a TypeInfo object that represents this type.

DefineConstructor(MethodAttributes, CallingConventions, Type[], Type[][], Type[][])

Adds a new constructor to the type, with the given attributes, signature, and custom modifiers.

DefineConstructor(MethodAttributes, CallingConventions, Type[])

Adds a new constructor to the type, with the given attributes and signature.

DefineConstructorCore(MethodAttributes, CallingConventions, Type[], Type[][], Type[][])

When overridden in a derived class, adds a new constructor to the type, with the given attributes, signature, and custom modifiers.

DefineDefaultConstructor(MethodAttributes)

Defines the parameterless constructor. The constructor defined here will simply call the parameterless constructor of the parent.

DefineDefaultConstructorCore(MethodAttributes)

When overridden in a derived class, defines the parameterless constructor. The constructor defined here calls the parameterless constructor of the parent.

DefineEvent(String, EventAttributes, Type)

Adds a new event to the type, with the given name, attributes and event type.

DefineEventCore(String, EventAttributes, Type)

When overridden in a derived class, adds a new event to the type, with the given name, attributes, and event type.

DefineField(String, Type, FieldAttributes)

Adds a new field to the type, with the given name, attributes, and field type.

DefineField(String, Type, Type[], Type[], FieldAttributes)

Adds a new field to the type, with the given name, attributes, field type, and custom modifiers.

DefineFieldCore(String, Type, Type[], Type[], FieldAttributes)

When overridden in a derived class, adds a new field to the type, with the given name, attributes, field type, and custom modifiers.

DefineGenericParameters(String[])

Defines the generic type parameters for the current type, specifying their number and their names, and returns an array of GenericTypeParameterBuilder objects that can be used to set their constraints.

DefineGenericParametersCore(String[])

When overridden in a derived class, defines the generic type parameters for the current type, specifying their number and their names.

DefineInitializedData(String, Byte[], FieldAttributes)

Defines initialized data field in the .sdata section of the portable executable (PE) file.

DefineInitializedDataCore(String, Byte[], FieldAttributes)

When overridden in a derived class, defines initialized data field in the .sdata section of the portable executable (PE) file.

DefineMethod(String, MethodAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][])

Adds a new method to the type, with the specified name, method attributes, calling convention, method signature, and custom modifiers.

DefineMethod(String, MethodAttributes, CallingConventions, Type, Type[])

Adds a new method to the type, with the specified name, method attributes, calling convention, and method signature.

DefineMethod(String, MethodAttributes, CallingConventions)

Adds a new method to the type, with the specified name, method attributes, and calling convention.

DefineMethod(String, MethodAttributes, Type, Type[])

Adds a new method to the type, with the specified name, method attributes, and method signature.

DefineMethod(String, MethodAttributes)

Adds a new method to the type, with the specified name and method attributes.

DefineMethodCore(String, MethodAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][])

When overridden in a derived class, adds a new method to the type, with the specified name, method attributes, calling convention, method signature, and custom modifiers.

DefineMethodOverride(MethodInfo, MethodInfo)

Specifies a given method body that implements a given method declaration, potentially with a different name.

DefineMethodOverrideCore(MethodInfo, MethodInfo)

When overridden in a derived class, specifies a given method body that implements a given method declaration, potentially with a different name.

DefineNestedType(String, TypeAttributes, Type, Int32)

Defines a nested type, given its name, attributes, the total size of the type, and the type that it extends.

DefineNestedType(String, TypeAttributes, Type, PackingSize, Int32)

Defines a nested type, given its name, attributes, size, and the type that it extends.

DefineNestedType(String, TypeAttributes, Type, PackingSize)

Defines a nested type, given its name, attributes, the type that it extends, and the packing size.

DefineNestedType(String, TypeAttributes, Type, Type[])

Defines a nested type, given its name, attributes, the type that it extends, and the interfaces that it implements.

DefineNestedType(String, TypeAttributes, Type)

Defines a nested type, given its name, attributes, and the type that it extends.

DefineNestedType(String, TypeAttributes)

Defines a nested type, given its name and attributes.

DefineNestedType(String)

Defines a nested type, given its name.

DefineNestedTypeCore(String, TypeAttributes, Type, Type[], PackingSize, Int32)

When overridden in a derived class, defines a nested type, given its name, attributes, size, and the type that it extends.

DefinePInvokeMethod(String, String, MethodAttributes, CallingConventions, Type, Type[], CallingConvention, CharSet)

Defines a PInvoke method given its name, the name of the DLL in which the method is defined, the attributes of the method, the calling convention of the method, the return type of the method, the types of the parameters of the method, and the PInvoke flags.

DefinePInvokeMethod(String, String, String, MethodAttributes, CallingConventions, Type, Type[], CallingConvention, CharSet)

Defines a PInvoke method given its name, the name of the DLL in which the method is defined, the name of the entry point, the attributes of the method, the calling convention of the method, the return type of the method, the types of the parameters of the method, and the PInvoke flags.

DefinePInvokeMethod(String, String, String, MethodAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][], CallingConvention, CharSet)

Defines a PInvoke method given its name, the name of the DLL in which the method is defined, the name of the entry point, the attributes of the method, the calling convention of the method, the return type of the method, the types of the parameters of the method, the PInvoke flags, and custom modifiers for the parameters and return type.

DefinePInvokeMethodCore(String, String, String, MethodAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][], CallingConvention, CharSet)

When overridden in a derived class, defines a PInvoke method with the provided name, DLL name, entry point name, attributes, calling convention, return type, types of the parameters, PInvoke flags, and custom modifiers for the parameters and return type.

DefineProperty(String, PropertyAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][])

Adds a new property to the type, with the given name, calling convention, property signature, and custom modifiers.

DefineProperty(String, PropertyAttributes, CallingConventions, Type, Type[])

Adds a new property to the type, with the given name, attributes, calling convention, and property signature.

DefineProperty(String, PropertyAttributes, Type, Type[], Type[], Type[], Type[][], Type[][])

Adds a new property to the type, with the given name, property signature, and custom modifiers.

DefineProperty(String, PropertyAttributes, Type, Type[])

Adds a new property to the type, with the given name and property signature.

DefinePropertyCore(String, PropertyAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][])

When overridden in a derived class, adds a new property to the type, with the given name, calling convention, property signature, and custom modifiers.

DefineTypeInitializer()

Defines the initializer for this type.

DefineTypeInitializerCore()

When overridden in a derived class, defines the initializer for this type.

DefineUninitializedData(String, Int32, FieldAttributes)

Defines an uninitialized data field in the .sdata section of the portable executable (PE) file.

DefineUninitializedDataCore(String, Int32, FieldAttributes)

When overridden in a derived class, defines an uninitialized data field in the .sdata section of the portable executable (PE) file.

Equals(Object)

Determines if the underlying system type of the current Type object is the same as the underlying system type of the specified Object.

(Inherited from Type)
Equals(Object)

Returns a value that indicates whether this instance is equal to a specified object.

(Inherited from MemberInfo)
Equals(Type)

Determines if the underlying system type of the current Type is the same as the underlying system type of the specified Type.

(Inherited from Type)
FindInterfaces(TypeFilter, Object)

Returns an array of Type objects representing a filtered list of interfaces implemented or inherited by the current Type.

(Inherited from Type)
FindInterfaces(TypeFilter, Object) (Inherited from TypeInfo)
FindMembers(MemberTypes, BindingFlags, MemberFilter, Object)

Returns a filtered array of MemberInfo objects of the specified member type.

(Inherited from Type)
FindMembers(MemberTypes, BindingFlags, MemberFilter, Object) (Inherited from TypeInfo)
GetArrayRank()
GetArrayRank()

Gets the number of dimensions in an array.

(Inherited from Type)
GetArrayRank() (Inherited from TypeInfo)
GetAttributeFlagsImpl()

When overridden in a derived class, implements the Attributes property and gets a bitwise combination of enumeration values that indicate the attributes associated with the Type.

GetAttributeFlagsImpl()

When overridden in a derived class, implements the Attributes property and gets a bitwise combination of enumeration values that indicate the attributes associated with the Type.

(Inherited from Type)
GetConstructor(BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

Searches for a constructor whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetConstructor(BindingFlags, Binder, Type[], ParameterModifier[])

Searches for a constructor whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetConstructor(BindingFlags, Type[])

Searches for a constructor whose parameters match the specified argument types, using the specified binding constraints.

(Inherited from Type)
GetConstructor(Type, ConstructorInfo)

Returns the constructor of the specified constructed generic type that corresponds to the specified constructor of the generic type definition.

GetConstructor(Type[])

Searches for a public instance constructor whose parameters match the types in the specified array.

(Inherited from Type)
GetConstructor(Type[]) (Inherited from TypeInfo)
GetConstructorImpl(BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

When overridden in a derived class, searches for a constructor whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

GetConstructorImpl(BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

When overridden in a derived class, searches for a constructor whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetConstructors()

Returns all the public constructors defined for the current Type.

(Inherited from Type)
GetConstructors() (Inherited from TypeInfo)
GetConstructors(BindingFlags)

Returns an array of ConstructorInfo objects representing the public and non-public constructors defined for this class, as specified.

GetConstructors(BindingFlags) (Inherited from TypeInfo)
GetCustomAttributes(Boolean)

Returns all the custom attributes defined for this type.

GetCustomAttributes(Boolean)

When overridden in a derived class, returns an array of all custom attributes applied to this member.

(Inherited from MemberInfo)
GetCustomAttributes(Type, Boolean)

Returns all the custom attributes of the current type that are assignable to a specified type.

GetCustomAttributes(Type, Boolean)

When overridden in a derived class, returns an array of custom attributes applied to this member and identified by Type.

(Inherited from MemberInfo)
GetCustomAttributesData()

Returns a list of CustomAttributeData objects representing data about the attributes that have been applied to the target member.

(Inherited from MemberInfo)
GetDeclaredEvent(String)

Returns an object that represents the specified event declared by the current type.

(Inherited from TypeInfo)
GetDeclaredField(String)

Returns an object that represents the specified field declared by the current type.

(Inherited from TypeInfo)
GetDeclaredMethod(String)

Returns an object that represents the specified method declared by the current type.

(Inherited from TypeInfo)
GetDeclaredMethods(String)

Returns a collection that contains all methods declared on the current type that match the specified name.

(Inherited from TypeInfo)
GetDeclaredNestedType(String)

Returns an object that represents the specified nested type declared by the current type.

(Inherited from TypeInfo)
GetDeclaredProperty(String)

Returns an object that represents the specified property declared by the current type.

(Inherited from TypeInfo)
GetDefaultMembers()

Searches for the members defined for the current Type whose DefaultMemberAttribute is set.

(Inherited from Type)
GetDefaultMembers() (Inherited from TypeInfo)
GetElementType()

Calling this method always throws NotSupportedException.

GetEnumName(Object)

Returns the name of the constant that has the specified value, for the current enumeration type.

(Inherited from Type)
GetEnumName(Object) (Inherited from TypeInfo)
GetEnumNames()

Returns the names of the members of the current enumeration type.

(Inherited from Type)
GetEnumNames() (Inherited from TypeInfo)
GetEnumUnderlyingType()

Returns the underlying type of the current enumeration type.

(Inherited from Type)
GetEnumUnderlyingType() (Inherited from TypeInfo)
GetEnumValues()

Returns an array of the values of the constants in the current enumeration type.

(Inherited from Type)
GetEnumValues() (Inherited from TypeInfo)
GetEnumValuesAsUnderlyingType()

Retrieves an array of the values of the underlying type constants of this enumeration type.

(Inherited from Type)
GetEvent(String, BindingFlags)

Returns the event with the specified name.

GetEvent(String, BindingFlags) (Inherited from TypeInfo)
GetEvent(String)

Returns the EventInfo object representing the specified public event.

(Inherited from Type)
GetEvent(String) (Inherited from TypeInfo)
GetEvents()

Returns the public events declared or inherited by this type.

GetEvents() (Inherited from TypeInfo)
GetEvents(BindingFlags)

Returns the public and non-public events that are declared by this type.

GetEvents(BindingFlags) (Inherited from TypeInfo)
GetField(String, BindingFlags)

Returns the field specified by the given name.

GetField(String, BindingFlags) (Inherited from TypeInfo)
GetField(String)

Searches for the public field with the specified name.

(Inherited from Type)
GetField(String) (Inherited from TypeInfo)
GetField(Type, FieldInfo)

Returns the field of the specified constructed generic type that corresponds to the specified field of the generic type definition.

GetFields()

Returns all the public fields of the current Type.

(Inherited from Type)
GetFields() (Inherited from TypeInfo)
GetFields(BindingFlags)

Returns the public and non-public fields that are declared by this type.

GetFields(BindingFlags) (Inherited from TypeInfo)
GetFunctionPointerCallingConventions()

When overridden in a derived class, returns the calling conventions of the current function pointer Type.

(Inherited from Type)
GetFunctionPointerParameterTypes()

When overridden in a derived class, returns the parameter types of the current function pointer Type.

(Inherited from Type)
GetFunctionPointerReturnType()

When overridden in a derived class, returns the return type of the current function pointer Type.

(Inherited from Type)
GetGenericArguments()

Returns an array of Type objects representing the type arguments of a generic type or the type parameters of a generic type definition.

GetGenericArguments()

Returns an array of Type objects that represent the type arguments of a closed generic type or the type parameters of a generic type definition.

(Inherited from Type)
GetGenericArguments() (Inherited from TypeInfo)
GetGenericParameterConstraints()
GetGenericParameterConstraints()

Returns an array of Type objects that represent the constraints on the current generic type parameter.

(Inherited from Type)
GetGenericParameterConstraints() (Inherited from TypeInfo)
GetGenericTypeDefinition()

Returns a Type object that represents a generic type definition from which the current type can be obtained.

GetGenericTypeDefinition()

Returns a Type object that represents a generic type definition from which the current generic type can be constructed.

(Inherited from Type)
GetHashCode()

Returns the hash code for this instance.

(Inherited from Type)
GetHashCode()

Returns the hash code for this instance.

(Inherited from MemberInfo)
GetInterface(String, Boolean)

Returns the interface implemented (directly or indirectly) by this class with the fully qualified name matching the given interface name.

GetInterface(String, Boolean) (Inherited from TypeInfo)
GetInterface(String)

Searches for the interface with the specified name.

(Inherited from Type)
GetInterface(String) (Inherited from TypeInfo)
GetInterfaceMap(Type)

Returns an interface mapping for the requested interface.

GetInterfaces()

Returns an array of all the interfaces implemented on this type and its base types.

GetInterfaces() (Inherited from TypeInfo)
GetMember(String, BindingFlags)

Searches for the specified members, using the specified binding constraints.

(Inherited from Type)
GetMember(String, BindingFlags) (Inherited from TypeInfo)
GetMember(String, MemberTypes, BindingFlags)

Returns all the public and non-public members declared or inherited by this type, as specified.

GetMember(String, MemberTypes, BindingFlags) (Inherited from TypeInfo)
GetMember(String)

Searches for the public members with the specified name.

(Inherited from Type)
GetMember(String) (Inherited from TypeInfo)
GetMembers()

Returns all the public members of the current Type.

(Inherited from Type)
GetMembers() (Inherited from TypeInfo)
GetMembers(BindingFlags)

Returns the members for the public and non-public members declared or inherited by this type.

GetMembers(BindingFlags) (Inherited from TypeInfo)
GetMemberWithSameMetadataDefinitionAs(MemberInfo)

Searches for the MemberInfo on the current Type that matches the specified MemberInfo.

(Inherited from Type)
GetMethod(String, BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

Searches for the specified method whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetMethod(String, BindingFlags, Binder, Type[], ParameterModifier[])

Searches for the specified method whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetMethod(String, BindingFlags, Type[])

Searches for the specified method whose parameters match the specified argument types, using the specified binding constraints.

(Inherited from Type)
GetMethod(String, BindingFlags)

Searches for the specified method, using the specified binding constraints.

(Inherited from Type)
GetMethod(String, BindingFlags) (Inherited from TypeInfo)
GetMethod(String, Int32, BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

Searches for the specified method whose parameters match the specified generic parameter count, argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetMethod(String, Int32, BindingFlags, Binder, Type[], ParameterModifier[])

Searches for the specified method whose parameters match the specified generic parameter count, argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetMethod(String, Int32, BindingFlags, Type[])

Searches for the specified method whose parameters match the specified generic parameter count and argument types, using the specified binding constraints.

(Inherited from Type)
GetMethod(String, Int32, Type[], ParameterModifier[])

Searches for the specified public method whose parameters match the specified generic parameter count, argument types and modifiers.

(Inherited from Type)
GetMethod(String, Int32, Type[])

Searches for the specified public method whose parameters match the specified generic parameter count and argument types.

(Inherited from Type)
GetMethod(String, Type[], ParameterModifier[])

Searches for the specified public method whose parameters match the specified argument types and modifiers.

(Inherited from Type)
GetMethod(String, Type[], ParameterModifier[]) (Inherited from TypeInfo)
GetMethod(String, Type[])

Searches for the specified public method whose parameters match the specified argument types.

(Inherited from Type)
GetMethod(String, Type[]) (Inherited from TypeInfo)
GetMethod(String)

Searches for the public method with the specified name.

(Inherited from Type)
GetMethod(String) (Inherited from TypeInfo)
GetMethod(Type, MethodInfo)

Returns the method of the specified constructed generic type that corresponds to the specified method of the generic type definition.

GetMethodImpl(String, BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

When overridden in a derived class, searches for the specified method whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

GetMethodImpl(String, BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

When overridden in a derived class, searches for the specified method whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetMethodImpl(String, Int32, BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

When overridden in a derived class, searches for the specified method whose parameters match the specified generic parameter count, argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetMethods()

Returns all the public methods of the current Type.

(Inherited from Type)
GetMethods() (Inherited from TypeInfo)
GetMethods(BindingFlags)

Returns all the public and non-public methods declared or inherited by this type, as specified.

GetMethods(BindingFlags) (Inherited from TypeInfo)
GetNestedType(String, BindingFlags)

Returns the public and non-public nested types that are declared by this type.

GetNestedType(String, BindingFlags) (Inherited from TypeInfo)
GetNestedType(String)

Searches for the public nested type with the specified name.

(Inherited from Type)
GetNestedType(String) (Inherited from TypeInfo)
GetNestedTypes()

Returns the public types nested in the current Type.

(Inherited from Type)
GetNestedTypes() (Inherited from TypeInfo)
GetNestedTypes(BindingFlags)

Returns the public and non-public nested types that are declared or inherited by this type.

GetNestedTypes(BindingFlags) (Inherited from TypeInfo)
GetOptionalCustomModifiers()

When overridden in a derived class, returns the optional custom modifiers of the current Type.

(Inherited from Type)
GetProperties()

Returns all the public properties of the current Type.

(Inherited from Type)
GetProperties() (Inherited from TypeInfo)
GetProperties(BindingFlags)

Returns all the public and non-public properties declared or inherited by this type, as specified.

GetProperties(BindingFlags) (Inherited from TypeInfo)
GetProperty(String, BindingFlags, Binder, Type, Type[], ParameterModifier[])

Searches for the specified property whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetProperty(String, BindingFlags)

Searches for the specified property, using the specified binding constraints.

(Inherited from Type)
GetProperty(String, BindingFlags) (Inherited from TypeInfo)
GetProperty(String, Type, Type[], ParameterModifier[])

Searches for the specified public property whose parameters match the specified argument types and modifiers.

(Inherited from Type)
GetProperty(String, Type, Type[], ParameterModifier[]) (Inherited from TypeInfo)
GetProperty(String, Type, Type[])

Searches for the specified public property whose parameters match the specified argument types.

(Inherited from Type)
GetProperty(String, Type, Type[]) (Inherited from TypeInfo)
GetProperty(String, Type)

Searches for the public property with the specified name and return type.

(Inherited from Type)
GetProperty(String, Type) (Inherited from TypeInfo)
GetProperty(String, Type[])

Searches for the specified public property whose parameters match the specified argument types.

(Inherited from Type)
GetProperty(String, Type[]) (Inherited from TypeInfo)
GetProperty(String)

Searches for the public property with the specified name.

(Inherited from Type)
GetProperty(String) (Inherited from TypeInfo)
GetPropertyImpl(String, BindingFlags, Binder, Type, Type[], ParameterModifier[])

When overridden in a derived class, searches for the specified property whose parameters match the specified argument types and modifiers, using the specified binding constraints.

GetPropertyImpl(String, BindingFlags, Binder, Type, Type[], ParameterModifier[])

When overridden in a derived class, searches for the specified property whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetRequiredCustomModifiers()

When overridden in a derived class, returns the required custom modifiers of the current Type.

(Inherited from Type)
GetType()

Gets the current Type.

(Inherited from Type)
GetType()

Discovers the attributes of a member and provides access to member metadata.

(Inherited from MemberInfo)
GetTypeCodeImpl()

Returns the underlying type code of this Type instance.

(Inherited from Type)
HasElementTypeImpl()

When overridden in a derived class, implements the HasElementType property and determines whether the current Type encompasses or refers to another type; that is, whether the current Type is an array, a pointer, or is passed by reference.

HasElementTypeImpl()

When overridden in a derived class, implements the HasElementType property and determines whether the current Type encompasses or refers to another type; that is, whether the current Type is an array, a pointer, or is passed by reference.

(Inherited from Type)
HasSameMetadataDefinitionAs(MemberInfo) (Inherited from MemberInfo)
InvokeMember(String, BindingFlags, Binder, Object, Object[], CultureInfo)

Invokes the specified member, using the specified binding constraints and matching the specified argument list and culture.

(Inherited from Type)
InvokeMember(String, BindingFlags, Binder, Object, Object[], ParameterModifier[], CultureInfo, String[])

Invokes the specified member. The method that is to be invoked must be accessible and provide the most specific match with the specified argument list, under the constraints of the specified binder and invocation attributes.

InvokeMember(String, BindingFlags, Binder, Object, Object[])

Invokes the specified member, using the specified binding constraints and matching the specified argument list.

(Inherited from Type)
IsArrayImpl()

When overridden in a derived class, implements the IsArray property and determines whether the Type is an array.

IsArrayImpl()

When overridden in a derived class, implements the IsArray property and determines whether the Type is an array.

(Inherited from Type)
IsAssignableFrom(Type)

Gets a value that indicates whether a specified Type can be assigned to this object.

IsAssignableFrom(Type) (Inherited from TypeInfo)
IsAssignableFrom(TypeInfo)

Gets a value that indicates whether a specified TypeInfo object can be assigned to this object.

IsAssignableTo(Type)

Determines whether the current type can be assigned to a variable of the specified targetType.

(Inherited from Type)
IsByRefImpl()

When overridden in a derived class, implements the IsByRef property and determines whether the Type is passed by reference.

IsByRefImpl()

When overridden in a derived class, implements the IsByRef property and determines whether the Type is passed by reference.

(Inherited from Type)
IsCOMObjectImpl()

When overridden in a derived class, implements the IsCOMObject property and determines whether the Type is a COM object.

IsCOMObjectImpl()

When overridden in a derived class, implements the IsCOMObject property and determines whether the Type is a COM object.

(Inherited from Type)
IsContextfulImpl()

Implements the IsContextful property and determines whether the Type can be hosted in a context.

(Inherited from Type)
IsCreated()

Returns a value that indicates whether the current dynamic type has been created.

IsCreatedCore()

When overridden in a derived class, returns a value that indicates whether the current dynamic type has been created.

IsDefined(Type, Boolean)

Determines whether a custom attribute is applied to the current type.

IsDefined(Type, Boolean)

When overridden in a derived class, indicates whether one or more attributes of the specified type or of its derived types is applied to this member.

(Inherited from MemberInfo)
IsEnumDefined(Object)

Returns a value that indicates whether the specified value exists in the current enumeration type.

(Inherited from Type)
IsEnumDefined(Object) (Inherited from TypeInfo)
IsEquivalentTo(Type)

Determines whether two COM types have the same identity and are eligible for type equivalence.

(Inherited from Type)
IsEquivalentTo(Type) (Inherited from TypeInfo)
IsInstanceOfType(Object)

Determines whether the specified object is an instance of the current Type.

(Inherited from Type)
IsInstanceOfType(Object) (Inherited from TypeInfo)
IsMarshalByRefImpl()

Implements the IsMarshalByRef property and determines whether the Type is marshaled by reference.

(Inherited from Type)
IsPointerImpl()

When overridden in a derived class, implements the IsPointer property and determines whether the Type is a pointer.

IsPointerImpl()

When overridden in a derived class, implements the IsPointer property and determines whether the Type is a pointer.

(Inherited from Type)
IsPrimitiveImpl()

When overridden in a derived class, implements the IsPrimitive property and determines whether the Type is one of the primitive types.

IsPrimitiveImpl()

When overridden in a derived class, implements the IsPrimitive property and determines whether the Type is one of the primitive types.

(Inherited from Type)
IsSubclassOf(Type)

Determines whether this type is derived from a specified type.

IsSubclassOf(Type) (Inherited from TypeInfo)
IsValueTypeImpl()

Implements the IsValueType property and determines whether the Type is a value type; that is, not a class or an interface.

(Inherited from Type)
MakeArrayType()

Returns a Type object that represents a one-dimensional array of the current type, with a lower bound of zero.

MakeArrayType()

Returns a Type object representing a one-dimensional array of the current type, with a lower bound of zero.

(Inherited from Type)
MakeArrayType(Int32)

Returns a Type object that represents an array of the current type, with the specified number of dimensions.

MakeArrayType(Int32)

Returns a Type object representing an array of the current type, with the specified number of dimensions.

(Inherited from Type)
MakeByRefType()

Returns a Type object that represents the current type when passed as a ref parameter (ByRef in Visual Basic).

MakeByRefType()

Returns a Type object that represents the current type when passed as a ref parameter (ByRef parameter in Visual Basic).

(Inherited from Type)
MakeGenericType(Type[])

Substitutes the elements of an array of types for the type parameters of the current generic type definition, and returns the resulting constructed type.

MakeGenericType(Type[])

Substitutes the elements of an array of types for the type parameters of the current generic type definition and returns a Type object representing the resulting constructed type.

(Inherited from Type)
MakePointerType()

Returns a Type object that represents the type of an unmanaged pointer to the current type.

MakePointerType()

Returns a Type object that represents a pointer to the current type.

(Inherited from Type)
MemberwiseClone()

Creates a shallow copy of the current Object.

(Inherited from Object)
SetCustomAttribute(ConstructorInfo, Byte[])

Sets a custom attribute using a specified custom attribute blob.

SetCustomAttribute(CustomAttributeBuilder)

Set a custom attribute using a custom attribute builder.

SetCustomAttributeCore(ConstructorInfo, ReadOnlySpan<Byte>)

When overridden in a derived class, sets a custom attribute on this assembly.

SetParent(Type)

Sets the base type of the type currently under construction.

SetParentCore(Type)

When overridden in a derived class, sets the base type of the type currently under construction.

ToString()

Returns the name of the type excluding the namespace.

Explicit Interface Implementations

_MemberInfo.GetIDsOfNames(Guid, IntPtr, UInt32, UInt32, IntPtr)

Maps a set of names to a corresponding set of dispatch identifiers.

(Inherited from MemberInfo)
_MemberInfo.GetType()

Gets a Type object representing the MemberInfo class.

(Inherited from MemberInfo)
_MemberInfo.GetTypeInfo(UInt32, UInt32, IntPtr)

Retrieves the type information for an object, which can then be used to get the type information for an interface.

(Inherited from MemberInfo)
_MemberInfo.GetTypeInfoCount(UInt32)

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

(Inherited from MemberInfo)
_MemberInfo.Invoke(UInt32, Guid, UInt32, Int16, IntPtr, IntPtr, IntPtr, IntPtr)

Provides access to properties and methods exposed by an object.

(Inherited from MemberInfo)
_Type.GetIDsOfNames(Guid, IntPtr, UInt32, UInt32, IntPtr)

Maps a set of names to a corresponding set of dispatch identifiers.

(Inherited from Type)
_Type.GetTypeInfo(UInt32, UInt32, IntPtr)

Retrieves the type information for an object, which can then be used to get the type information for an interface.

(Inherited from Type)
_Type.GetTypeInfoCount(UInt32)

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

(Inherited from Type)
_Type.Invoke(UInt32, Guid, UInt32, Int16, IntPtr, IntPtr, IntPtr, IntPtr)

Provides access to properties and methods exposed by an object.

(Inherited from Type)
_TypeBuilder.GetIDsOfNames(Guid, IntPtr, UInt32, UInt32, IntPtr)

Maps a set of names to a corresponding set of dispatch identifiers.

_TypeBuilder.GetTypeInfo(UInt32, UInt32, IntPtr)

Retrieves the type information for an object, which can then be used to get the type information for an interface.

_TypeBuilder.GetTypeInfoCount(UInt32)

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

_TypeBuilder.Invoke(UInt32, Guid, UInt32, Int16, IntPtr, IntPtr, IntPtr, IntPtr)

Provides access to properties and methods exposed by an object.

ICustomAttributeProvider.GetCustomAttributes(Boolean)

Returns an array of all of the custom attributes defined on this member, excluding named attributes, or an empty array if there are no custom attributes.

(Inherited from MemberInfo)
ICustomAttributeProvider.GetCustomAttributes(Type, Boolean)

Returns an array of custom attributes defined on this member, identified by type, or an empty array if there are no custom attributes of that type.

(Inherited from MemberInfo)
ICustomAttributeProvider.IsDefined(Type, Boolean)

Indicates whether one or more instance of attributeType is defined on this member.

(Inherited from MemberInfo)
IReflectableType.GetTypeInfo()

Returns a representation of the current type as a TypeInfo object.

(Inherited from TypeInfo)

Extension Methods

GetCustomAttribute(MemberInfo, Type, Boolean)

Retrieves a custom attribute of a specified type that is applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttribute(MemberInfo, Type)

Retrieves a custom attribute of a specified type that is applied to a specified member.

GetCustomAttribute<T>(MemberInfo, Boolean)

Retrieves a custom attribute of a specified type that is applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttribute<T>(MemberInfo)

Retrieves a custom attribute of a specified type that is applied to a specified member.

GetCustomAttributes(MemberInfo, Boolean)

Retrieves a collection of custom attributes that are applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttributes(MemberInfo, Type, Boolean)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttributes(MemberInfo, Type)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member.

GetCustomAttributes(MemberInfo)

Retrieves a collection of custom attributes that are applied to a specified member.

GetCustomAttributes<T>(MemberInfo, Boolean)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttributes<T>(MemberInfo)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member.

IsDefined(MemberInfo, Type, Boolean)

Indicates whether custom attributes of a specified type are applied to a specified member, and, optionally, applied to its ancestors.

IsDefined(MemberInfo, Type)

Indicates whether custom attributes of a specified type are applied to a specified member.

GetTypeInfo(Type)

Returns the TypeInfo representation of the specified type.

GetMetadataToken(MemberInfo)

Gets a metadata token for the given member, if available.

HasMetadataToken(MemberInfo)

Returns a value that indicates whether a metadata token is available for the specified member.

GetRuntimeEvent(Type, String)

Retrieves an object that represents the specified event.

GetRuntimeEvents(Type)

Retrieves a collection that represents all the events defined on a specified type.

GetRuntimeField(Type, String)

Retrieves an object that represents a specified field.

GetRuntimeFields(Type)

Retrieves a collection that represents all the fields defined on a specified type.

GetRuntimeInterfaceMap(TypeInfo, Type)

Returns an interface mapping for the specified type and the specified interface.

GetRuntimeMethod(Type, String, Type[])

Retrieves an object that represents a specified method.

GetRuntimeMethods(Type)

Retrieves a collection that represents all methods defined on a specified type.

GetRuntimeProperties(Type)

Retrieves a collection that represents all the properties defined on a specified type.

GetRuntimeProperty(Type, String)

Retrieves an object that represents a specified property.

GetConstructor(Type, Type[])
GetDefaultMembers(Type)
GetEvents(Type, BindingFlags)
GetEvents(Type)
GetField(Type, String, BindingFlags)
GetFields(Type)
GetInterfaces(Type)
GetMember(Type, String, BindingFlags)
GetMember(Type, String)
GetMembers(Type)
GetMethod(Type, String, Type[])
GetMethod(Type, String)
GetMethods(Type, BindingFlags)
GetNestedType(Type, String, BindingFlags)
GetNestedTypes(Type, BindingFlags)
GetProperties(Type, BindingFlags)
GetProperties(Type)
GetProperty(Type, String, Type, Type[])
GetProperty(Type, String, Type)
GetProperty(Type, String)
IsAssignableFrom(Type, Type)
IsInstanceOfType(Type, Object)

Applies to

See also