Compartir vía


LINEST

Se aplica a:columna CalculadaTabla calculadaMeasurecálculo visual

Usa el método Least Squares para calculate una línea recta que mejor se adapte a los datos especificados y, a continuación, devuelve una tabla que describe la línea. La ecuación de la línea es de la forma: y = Slope1*x1 + Slope2*x2 + ... + Intercept.

Sintaxis

LINEST ( <columnY>, <columnX>[, …][, <const>] )

Parámetros

Término Definición
columnY Columna de y-valuesconocida. Debe tener un tipo escalar.
columnX Columnas de x-valuesconocidas. Debe tener un tipo escalar. Se debe proporcionar al menos uno.
const (Opcional) Constante especificar si se va a forzar la constante interceptar igual a 0. omitido, el de interceptación de se calcula normalmente; , el interceptar se establece en cero.

Devolver value

Tabla de una sola fila que describe la línea, además de estadísticas adicionales. Estas son las columnas disponibles:

  • Pendiente1, Pendiente2, ..., SlopeN: los coeficientes correspondientes a cada x-value;
  • interceptar: interceptar value;
  • StandardErrorSlope1, StandardErrorSlope2, ..., StandardErrorSlopeN: el errorvalues estándar para los coeficientes Slope1, Slope2, ..., SlopeN;
  • StandardErrorIntercept: el errorvalue estándar de la constante interceptar;
  • CoeficienteOfDeterminación: el coeficiente de determinación (r²). Compara los intervalos estimados and y-valuesreales , and intervalos en value de 0 a 1: cuanto mayor sea el value, mayor será la correlación en el sample;
  • StandardError: el error estándar para la estimación y;
  • FStatistic: la estadística F, or el valueobservado por F. Utilice la estadística F para determinar si la relación observada entre las variables dependientes and independientes se produce por casualidad;
  • DegreesOfFreedom: el degrees de libertad. Use este value para ayudarle a findvalues críticos para F en una tabla estadística, and determinar un nivel de confianza para el modelo;
  • RegressionSumOfSquares: el sum de regresión de cuadrados;
  • ResidualSumOfSquares: el sum residual de cuadrados.

Observaciones

columnY and los columnXdeben all pertenecer a la misma tabla.

Ejemplo 1

La siguiente consulta DAX:

EVALUATE LINEST(
	'FactInternetSales'[SalesAmount],
	'FactInternetSales'[TotalProductCost]
)

Devuelve una tabla de una sola fila con diez columnas:

Pendiente1 Interceptar StandardErrorSlope1 StandardErrorIntercept CoefficientOfDetermination
1.67703250456677 6.34550460373026 0.000448675725548806 0.279131821917317 0.995695557281456
StandardError FStatistic DegreesOfFreedom RegressionSumOfSquares ResidualSumOfSquares
60.9171030357485 13970688.6139993 60396 51843736761.658 224123120.339218
  • Pendiente1andInterceptar: los coeficientes del modelo lineal calculado;
  • StandardErrorSlope1andStandardErrorIntercept: el errorvalues estándar para los coeficientes anteriores;
  • , StandardError, FStatistic, DegreesOfFreedom, RegressionSumOfSquaresandResidualSumOfSquares: estadísticas de regresión sobre el modelo.

Para una venta por Internet determinada, este modelo predice el importe de la venta mediante la fórmula siguiente:

SalesAmount = Slope1 * TotalProductCost + Intercept

Ejemplo 2

La siguiente consulta DAX:

EVALUATE LINEST(
	'DimCustomer'[TotalSalesAmount],
	'DimCustomer'[YearlyIncome],
	'DimCustomer'[TotalChildren],
	'DimCustomer'[BirthDate]
)

Devuelve una tabla de una sola fila con catorce columnas:

  • Pendiente1
  • Pendiente2
  • Pendiente3
  • Interceptar
  • StandardErrorSlope1
  • StandardErrorSlope2
  • StandardErrorSlope3
  • StandardErrorIntercept
  • CoefficientOfDetermination
  • StandardError
  • FStatistic
  • DegreesOfFreedom
  • RegressionSumOfSquares
  • ResidualSumOfSquares

Para un cliente determinado, este modelo predice las ventas totales por la fórmula siguiente (el date de nacimiento se convierte automáticamente en un número):

TotalSalesAmount = Slope1 * YearlyIncome + Slope2 * TotalChildren + Slope3 * BirthDate + Intercept

LINESTX funciones estadísticas