Compartir vía


Actualización del ajuste de hiperparámetros a la versión 2 del SDK

En la versión 2 del SDK, el ajuste de hiperparámetros se ha consolidado en trabajos.

Un trabajo tiene un tipo. La mayoría de los trabajos son trabajos de comando que ejecutan command, como python main.py. Lo que se ejecuta en un trabajo es independiente de cualquier lenguaje de programación, por lo que puede ejecutar scripts bash, invocar intérpretes python, ejecutar un montón de comandos curl o cualquier otra cosa.

Un trabajo de limpieza es otro tipo de trabajo, que define la configuración de limpieza y se puede iniciar llamando al método de limpieza del comando.

Para realizar la actualización, deberá cambiar el código para definir y enviar el experimento de ajuste de hiperparámetro a la versión 2 del SDK. Lo que se ejecuta dentro del trabajo no es preciso actualizarlo a la versión 2 del SDK. Sin embargo, se recomienda quitar cualquier código específico de Azure Machine Learning de los scripts de entrenamiento del modelo. Esta separación permite una transición más sencilla entre local y nube y se considera un procedimiento recomendado para MLOps maduro. En la práctica, esto significa quitar líneas de código de azureml.*. El registro de modelos y el código de seguimiento deben reemplazarse por MLflow. Para más información, consulte el artículo en el que se explica cómo se usa MLflow en la versión 2.

En este artículo se comparan los escenarios de SDK v1 con los de SDK v2.

Ejecución del ajuste de hiperparámetros en un experimento

  • SDK v1

    from azureml.core import ScriptRunConfig, Experiment, Workspace
    from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal
    from azureml.train.hyperdrive import choice, loguniform
    
    dataset = Dataset.get_by_name(ws, 'mnist-dataset')
    
    # list the files referenced by mnist dataset
    dataset.to_path()
    
    #define the search space for your hyperparameters
    param_sampling = RandomParameterSampling(
        {
            '--batch-size': choice(25, 50, 100),
            '--first-layer-neurons': choice(10, 50, 200, 300, 500),
            '--second-layer-neurons': choice(10, 50, 200, 500),
            '--learning-rate': loguniform(-6, -1)
        }
    )
    
    args = ['--data-folder', dataset.as_named_input('mnist').as_mount()]
    
    #Set up your script run
    src = ScriptRunConfig(source_directory=script_folder,
                          script='keras_mnist.py',
                          arguments=args,
                          compute_target=compute_target,
                          environment=keras_env)
    
    # Set early stopping on this one
    early_termination_policy = BanditPolicy(evaluation_interval=2, slack_factor=0.1)
    
    # Define the configurations for your hyperparameter tuning experiment
    hyperdrive_config = HyperDriveConfig(run_config=src,
                                         hyperparameter_sampling=param_sampling,
                                         policy=early_termination_policy,
                                         primary_metric_name='Accuracy',
                                         primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
                                         max_total_runs=20,
                                         max_concurrent_runs=4)
    # Specify your experiment details                                     
    experiment = Experiment(workspace, experiment_name)
    
    hyperdrive_run = experiment.submit(hyperdrive_config)
    
    #Find the best model
    best_run = hyperdrive_run.get_best_run_by_primary_metric()
    
  • SDK v2

    from azure.ai.ml import MLClient
    from azure.ai.ml import command, Input
    from azure.ai.ml.sweep import Choice, Uniform, MedianStoppingPolicy
    from azure.identity import DefaultAzureCredential
    
    # Create your command
    command_job_for_sweep = command(
        code="./src",
        command="python main.py --iris-csv ${{inputs.iris_csv}} --learning-rate ${{inputs.learning_rate}} --boosting ${{inputs.boosting}}",
        environment="AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu@latest",
        inputs={
            "iris_csv": Input(
                type="uri_file",
                path="https://azuremlexamples.blob.core.windows.net/datasets/iris.csv",
            ),
            #define the search space for your hyperparameters
            "learning_rate": Uniform(min_value=0.01, max_value=0.9),
            "boosting": Choice(values=["gbdt", "dart"]),
        },
        compute="cpu-cluster",
    )
    
    # Call sweep() on your command job to sweep over your parameter expressions
    sweep_job = command_job_for_sweep.sweep(
        compute="cpu-cluster", 
        sampling_algorithm="random",
        primary_metric="test-multi_logloss",
        goal="Minimize",
    )
    
    # Define the limits for this sweep
    sweep_job.set_limits(max_total_trials=20, max_concurrent_trials=10, timeout=7200)
    
    # Set early stopping on this one
    sweep_job.early_termination = MedianStoppingPolicy(delay_evaluation=5, evaluation_interval=2)
    
    # Specify your experiment details
    sweep_job.display_name = "lightgbm-iris-sweep-example"
    sweep_job.experiment_name = "lightgbm-iris-sweep-example"
    sweep_job.description = "Run a hyperparameter sweep job for LightGBM on Iris dataset."
    
    # submit the sweep
    returned_sweep_job = ml_client.create_or_update(sweep_job)
    
    # get a URL for the status of the job
    returned_sweep_job.services["Studio"].endpoint
    
    # Download best trial model output
    ml_client.jobs.download(returned_sweep_job.name, output_name="model")
    

Ejecución del ajuste de hiperparámetros en una canalización

  • SDK v1

    
    tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU')
    data_folder = dataset.as_mount()
    src = ScriptRunConfig(source_directory=script_folder,
                          script='tf_mnist.py',
                          arguments=['--data-folder', data_folder],
                          compute_target=compute_target,
                          environment=tf_env)
    
    #Define HyperDrive configs
    ps = RandomParameterSampling(
        {
            '--batch-size': choice(25, 50, 100),
            '--first-layer-neurons': choice(10, 50, 200, 300, 500),
            '--second-layer-neurons': choice(10, 50, 200, 500),
            '--learning-rate': loguniform(-6, -1)
        }
    )
    
    early_termination_policy = BanditPolicy(evaluation_interval=2, slack_factor=0.1)
    
    hd_config = HyperDriveConfig(run_config=src, 
                                 hyperparameter_sampling=ps,
                                 policy=early_termination_policy,
                                 primary_metric_name='validation_acc', 
                                 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, 
                                 max_total_runs=4,
                                 max_concurrent_runs=4)
    
    metrics_output_name = 'metrics_output'
    metrics_data = PipelineData(name='metrics_data',
                                datastore=datastore,
                                pipeline_output_name=metrics_output_name,
                                training_output=TrainingOutput("Metrics"))
    
    model_output_name = 'model_output'
    saved_model = PipelineData(name='saved_model',
                                datastore=datastore,
                                pipeline_output_name=model_output_name,
                                training_output=TrainingOutput("Model",
                                                               model_file="outputs/model/saved_model.pb"))
    #Create HyperDriveStep
    hd_step_name='hd_step01'
    hd_step = HyperDriveStep(
        name=hd_step_name,
        hyperdrive_config=hd_config,
        inputs=[data_folder],
        outputs=[metrics_data, saved_model])                             
    
    #Find and register best model
    conda_dep = CondaDependencies()
    conda_dep.add_pip_package("azureml-sdk")
    
    rcfg = RunConfiguration(conda_dependencies=conda_dep)
    
    register_model_step = PythonScriptStep(script_name='register_model.py',
                                           name="register_model_step01",
                                           inputs=[saved_model],
                                           compute_target=cpu_cluster,
                                           arguments=["--saved-model", saved_model],
                                           allow_reuse=True,
                                           runconfig=rcfg)
    
    register_model_step.run_after(hd_step)
    
    #Run the pipeline
    pipeline = Pipeline(workspace=ws, steps=[hd_step, register_model_step])
    pipeline_run = exp.submit(pipeline)
    
    
  • SDK v2

    train_component_func = load_component(path="./train.yml")
    score_component_func = load_component(path="./predict.yml")
    
    # define a pipeline
    @pipeline()
    def pipeline_with_hyperparameter_sweep():
        """Tune hyperparameters using sample components."""
        train_model = train_component_func(
            data=Input(
                type="uri_file",
                path="wasbs://datasets@azuremlexamples.blob.core.windows.net/iris.csv",
            ),
            c_value=Uniform(min_value=0.5, max_value=0.9),
            kernel=Choice(["rbf", "linear", "poly"]),
            coef0=Uniform(min_value=0.1, max_value=1),
            degree=3,
            gamma="scale",
            shrinking=False,
            probability=False,
            tol=0.001,
            cache_size=1024,
            verbose=False,
            max_iter=-1,
            decision_function_shape="ovr",
            break_ties=False,
            random_state=42,
        )
        sweep_step = train_model.sweep(
            primary_metric="training_f1_score",
            goal="minimize",
            sampling_algorithm="random",
            compute="cpu-cluster",
        )
        sweep_step.set_limits(max_total_trials=20, max_concurrent_trials=10, timeout=7200)
    
        score_data = score_component_func(
            model=sweep_step.outputs.model_output, test_data=sweep_step.outputs.test_data
        )
    
    
    pipeline_job = pipeline_with_hyperparameter_sweep()
    
    # set pipeline level compute
    pipeline_job.settings.default_compute = "cpu-cluster"
    
    # submit job to workspace
    pipeline_job = ml_client.jobs.create_or_update(
        pipeline_job, experiment_name="pipeline_samples"
    )
    pipeline_job
    

Asignación de la funcionalidad clave en SDK v1 y SDK v2

Funcionalidad en SDK v1 Asignación aproximada en SDK v2
HyperDriveRunConfig() SweepJob()
Paquete de hyperdrive Paquete de limpieza

Pasos siguientes

Para más información, consulte: