Compartir vía


Tutorial: Creación de un conjunto de escalado de máquinas virtuales de Azure a partir de una imagen personalizada de Packer mediante Terraform

Terraform habilita la definición, vista previa e implementación de la infraestructura en la nube. Con Terraform, se crean archivos de configuración mediante la sintaxis de HCL. La sintaxis de HCL permite especificar el proveedor de la nube, como Azure, y los elementos que componen la infraestructura de la nube. Después de crear los archivos de configuración, se crea un plan de ejecución que permite obtener una vista previa de los cambios de infraestructura antes de implementarlos. Una vez que compruebe los cambios, aplique el plan de ejecución para implementar la infraestructura.

Los conjuntos de escalado de máquinas virtuales de Azure permiten configurar máquinas virtuales idénticas. El número de instancias de máquina virtual se puede ajustar en función de la demanda o de una programación. Para más información, consulte Escalado automático de conjuntos de escalado de máquinas virtuales de Azure Portal.

En este artículo aprenderá a:

  • Configurar la implementación de Terraform
  • Usar variables y salidas para la implementación de Terraform
  • Crear e implementar una infraestructura de red
  • Crear una imagen de máquina virtual personalizada mediante Packer
  • Crear e implementar un conjunto de escalado de máquinas virtuales mediante la imagen personalizada
  • Crear e implementar un Jumpbox

1. Configurar su entorno

  • Suscripción de Azure: si no tiene una suscripción a Azure, cree una cuenta gratuita antes de empezar.

2. Creación de una imagen de Packer

  1. Instalación de Packer.

    Puntos clave:

    • Para confirmar que tiene acceso al ejecutable de Packer, ejecute el siguiente comando: packer -v.
    • Dependiendo del entorno, es posible que tenga que establecer la ruta de acceso y volver a abrir la línea de comandos.
  2. Cree un grupo de recursos con az group create para que contenga la imagen de Packer.

    az group create -n myPackerImages -l eastus
    
  3. Ejecute az ad sp create-for-rbac para que Packer pueda autenticarse en Azure con una entidad de servicio.

    az ad sp create-for-rbac --role Contributor --scopes /subscriptions/<subscription_id> --query "{ client_id: appId, client_secret: password, tenant_id: tenant }"
    

    Puntos clave:

    • Anote los valores de salida (appId, client_secret, tenant_id).
  4. Para ver la suscripción actual de Azure, ejecute az account show.

    az account show --query "{ subscription_id: id }"
    
  5. Cree un archivo de variables de plantilla de Packer denominado ubuntu.pkr.hcl e inserte el código siguiente. Actualice las líneas resaltadas con la entidad de servicio y la información de la suscripción de Azure.

    packer {
      required_plugins {
        azure = {
          source  = "github.com/hashicorp/azure"
          version = "~> 2"
        }
      }
    }
    
    variable client_id {
      type    = string
      default = null
    }
    variable client_secret {
      type    = string
      default = null
    }
    
    variable subscription_id {
      type    = string
      default = null
    }
    
    variable tenant_id {
      type    = string
      default = null
    }
    
    variable location {
      default = "eastus"
    }
    
    variable "image_resource_group_name" {
      description = "Name of the resource group in which the Packer image will be created"
      default     = "myPackerImages"
    }
    
    variable "oidc_request_url" {
      default = null
    }
    
    variable "oidc_request_token" {
      default = null
    }
    
    # arm builder
    source "azure-arm" "builder" {
      client_id                         = var.client_id
      client_secret                     = var.client_secret
      image_offer                       = "UbuntuServer"
      image_publisher                   = "canonical"
      image_sku                         = "16.04-LTS"
      location                          = var.location
      managed_image_name                = "myPackerImage"
      managed_image_resource_group_name = var.image_resource_group_name
      os_type                           = "Linux"
      subscription_id                   = var.subscription_id
      tenant_id                         = var.tenant_id
      oidc_request_url                  = var.oidc_request_url
      oidc_request_token                = var.oidc_request_token
      vm_size                           = "Standard_DS2_v2"
      azure_tags = {
        "dept" : "Engineering",
        "task" : "Image deployment",
      }
    }
    
    build {
      sources = ["source.azure-arm.builder"]
      provisioner "shell" {
        execute_command = "chmod +x {{ .Path }}; {{ .Vars }} sudo -E sh '{{ .Path }}'"
        inline = [
          "apt-get update",
          "apt-get upgrade -y",
          "apt-get -y install nginx",
          "/usr/sbin/waagent -force -deprovision+user && export HISTSIZE=0 && sync",
        ]
      }
    }
    

    Puntos clave:

    • Establezca los campos client_id, client_secret y tenant_id en los valores respectivos de la entidad de servicio.
    • Establezca el campo en el subscription_id identificador de suscripción de Azure.
  6. Compile la imagen de Packer.

    packer build ubuntu.json
    

3. Implementación del código de Terraform

  1. Cree un directorio en el que probar el código de ejemplo de Terraform y conviértalo en el directorio actual.

  2. Cree un archivo denominado main.tf e inserte el siguiente código:

    terraform {
    
      required_version = ">=0.12"
    
      required_providers {
        azurerm = {
          source  = "hashicorp/azurerm"
          version = "~>3.0"
        }
        azapi = {
          source  = "Azure/azapi"
          version = "~> 1.0"
        }
        local = {
          source  = "hashicorp/local"
          version = "2.4.0"
        }
        random = {
          source  = "hashicorp/random"
          version = "3.5.1"
        }
        tls = {
          source  = "hashicorp/tls"
          version = "4.0.4"
        }
      }
    }
    
    provider "azurerm" {
      features {
        resource_group {
          prevent_deletion_if_contains_resources = false
        }
      }
    }
    
    resource "random_pet" "id" {}
    
    resource "azurerm_resource_group" "vmss" {
      name     = coalesce(var.resource_group_name, "201-vmss-packer-jumpbox-${random_pet.id.id}")
      location = var.location
      tags     = var.tags
    }
    
    resource "random_string" "fqdn" {
      length  = 6
      special = false
      upper   = false
      numeric = false
    }
    
    resource "azurerm_virtual_network" "vmss" {
      name                = "vmss-vnet"
      address_space       = ["10.0.0.0/16"]
      location            = var.location
      resource_group_name = azurerm_resource_group.vmss.name
      tags                = var.tags
    }
    
    resource "azurerm_subnet" "vmss" {
      name                 = "vmss-subnet"
      resource_group_name  = azurerm_resource_group.vmss.name
      virtual_network_name = azurerm_virtual_network.vmss.name
      address_prefixes     = ["10.0.2.0/24"]
    }
    
    resource "azurerm_public_ip" "vmss" {
      name                = "vmss-public-ip"
      location            = var.location
      resource_group_name = azurerm_resource_group.vmss.name
      allocation_method   = "Static"
      domain_name_label   = random_string.fqdn.result
      tags                = var.tags
    }
    
    resource "azurerm_lb" "vmss" {
      name                = "vmss-lb"
      location            = var.location
      resource_group_name = azurerm_resource_group.vmss.name
    
      frontend_ip_configuration {
        name                 = "PublicIPAddress"
        public_ip_address_id = azurerm_public_ip.vmss.id
      }
    
      tags = var.tags
    }
    
    resource "azurerm_lb_backend_address_pool" "bpepool" {
      loadbalancer_id = azurerm_lb.vmss.id
      name            = "BackEndAddressPool"
    }
    
    resource "azurerm_lb_probe" "vmss" {
      loadbalancer_id = azurerm_lb.vmss.id
      name            = "ssh-running-probe"
      port            = var.application_port
    }
    
    resource "azurerm_lb_rule" "lbnatrule" {
      loadbalancer_id                = azurerm_lb.vmss.id
      name                           = "http"
      protocol                       = "Tcp"
      frontend_port                  = var.application_port
      backend_port                   = var.application_port
      backend_address_pool_ids       = [azurerm_lb_backend_address_pool.bpepool.id]
      frontend_ip_configuration_name = "PublicIPAddress"
      probe_id                       = azurerm_lb_probe.vmss.id
    }
    
    data "azurerm_resource_group" "image" {
      name = var.packer_resource_group_name
    }
    
    data "azurerm_image" "image" {
      name                = var.packer_image_name
      resource_group_name = data.azurerm_resource_group.image.name
    }
    
    resource "azapi_resource" "ssh_public_key" {
      type      = "Microsoft.Compute/sshPublicKeys@2022-11-01"
      name      = random_pet.id.id
      location  = azurerm_resource_group.vmss.location
      parent_id = azurerm_resource_group.vmss.id
    }
    
    resource "azapi_resource_action" "ssh_public_key_gen" {
      type        = "Microsoft.Compute/sshPublicKeys@2022-11-01"
      resource_id = azapi_resource.ssh_public_key.id
      action      = "generateKeyPair"
      method      = "POST"
    
      response_export_values = ["publicKey", "privateKey"]
    }
    
    resource "random_password" "password" {
      count  = var.admin_password == null ? 1 : 0
      length = 20
    }
    
    locals {
      admin_password = try(random_password.password[0].result, var.admin_password)
    }
    
    resource "azurerm_virtual_machine_scale_set" "vmss" {
      name                = "vmscaleset"
      location            = var.location
      resource_group_name = azurerm_resource_group.vmss.name
      upgrade_policy_mode = "Manual"
    
      sku {
        name     = "Standard_DS1_v2"
        tier     = "Standard"
        capacity = 2
      }
    
      storage_profile_image_reference {
        id = data.azurerm_image.image.id
      }
    
      storage_profile_os_disk {
        name              = ""
        caching           = "ReadWrite"
        create_option     = "FromImage"
        managed_disk_type = "Standard_LRS"
      }
    
      storage_profile_data_disk {
        lun           = 0
        caching       = "ReadWrite"
        create_option = "Empty"
        disk_size_gb  = 10
      }
    
      os_profile {
        computer_name_prefix = "vmlab"
        admin_username       = var.admin_user
        admin_password       = local.admin_password
      }
    
      os_profile_linux_config {
        disable_password_authentication = true
    
        ssh_keys {
          path     = "/home/azureuser/.ssh/authorized_keys"
          key_data = azapi_resource_action.ssh_public_key_gen.output.publicKey
        }
      }
    
      network_profile {
        name    = "terraformnetworkprofile"
        primary = true
    
        ip_configuration {
          name                                   = "IPConfiguration"
          subnet_id                              = azurerm_subnet.vmss.id
          load_balancer_backend_address_pool_ids = [azurerm_lb_backend_address_pool.bpepool.id]
          primary                                = true
        }
      }
    
      tags = var.tags
    }
    
    resource "azurerm_public_ip" "jumpbox" {
      name                = "jumpbox-public-ip"
      location            = var.location
      resource_group_name = azurerm_resource_group.vmss.name
      allocation_method   = "Static"
      domain_name_label   = "${random_string.fqdn.result}-ssh"
      tags                = var.tags
    }
    
    resource "azurerm_network_interface" "jumpbox" {
      name                = "jumpbox-nic"
      location            = var.location
      resource_group_name = azurerm_resource_group.vmss.name
    
      ip_configuration {
        name                          = "IPConfiguration"
        subnet_id                     = azurerm_subnet.vmss.id
        private_ip_address_allocation = "Dynamic"
        public_ip_address_id          = azurerm_public_ip.jumpbox.id
      }
    
      tags = var.tags
    }
    
    resource "azurerm_virtual_machine" "jumpbox" {
      name                  = "jumpbox"
      location              = var.location
      resource_group_name   = azurerm_resource_group.vmss.name
      network_interface_ids = [azurerm_network_interface.jumpbox.id]
      vm_size               = "Standard_DS1_v2"
    
      storage_image_reference {
        publisher = "Canonical"
        offer     = "UbuntuServer"
        sku       = "16.04-LTS"
        version   = "latest"
      }
    
      storage_os_disk {
        name              = "jumpbox-osdisk"
        caching           = "ReadWrite"
        create_option     = "FromImage"
        managed_disk_type = "Standard_LRS"
      }
    
      os_profile {
        computer_name  = "jumpbox"
        admin_username = var.admin_user
        admin_password = local.admin_password
      }
    
      os_profile_linux_config {
        disable_password_authentication = true
    
        ssh_keys {
          path     = "/home/azureuser/.ssh/authorized_keys"
          key_data = azapi_resource_action.ssh_public_key_gen.output.publicKey
        }
      }
    
      tags = var.tags
    }
    
  3. Cree un archivo llamado variables.tf que contenga las variables del proyecto e inserte el código siguiente:

    variable "packer_resource_group_name" {
      description = "Name of the resource group in which the Packer image will be created"
      default     = "myPackerImages"
    }
    
    variable "packer_image_name" {
      description = "Name of the Packer image"
      default     = "myPackerImage"
    }
    
    variable "resource_group_name" {
      description = "Name of the resource group in which the Packer image  will be created"
      default     = null
    }
    
    variable "location" {
      default     = "eastus"
      description = "Location where resources will be created"
    }
    
    variable "tags" {
      description = "Map of the tags to use for the resources that are deployed"
      type        = map(string)
      default = {
        environment = "codelab"
      }
    }
    
    variable "application_port" {
      description = "Port that you want to expose to the external load balancer"
      default     = 80
    }
    
    variable "admin_user" {
      description = "User name to use as the admin account on the VMs that will be part of the VM scale set"
      default     = "azureuser"
    }
    
    variable "admin_password" {
      description = "Default password for admin account"
      default     = null
    }
    
  4. Cree un archivo llamado output.tf para especificar qué valores muestra Terraform e inserte el código siguiente:

    output "vmss_public_ip_fqdn" {
      value = azurerm_public_ip.vmss.fqdn
    }
    
    output "jumpbox_public_ip_fqdn" {
      value = azurerm_public_ip.jumpbox.fqdn
    }
    
    output "jumpbox_public_ip" {
      value = azurerm_public_ip.jumpbox.ip_address
    }
    

4. Inicialización de Terraform

Para inicializar la implementación de Terraform, ejecute terraform init. Este comando descarga el proveedor de Azure necesario para administrar los recursos de Azure.

terraform init -upgrade

Puntos clave:

  • El parámetro -upgrade actualiza los complementos de proveedor necesarios a la versión más reciente que cumpla con las restricciones de versión de la configuración.

5. Creación de un plan de ejecución de Terraform

Ejecute terraform plan para crear un plan de ejecución.

terraform plan -out main.tfplan

Puntos clave:

  • El comando terraform plan crea un plan de ejecución, pero no lo ejecuta. En su lugar, determina qué acciones son necesarias para crear la configuración especificada en los archivos de configuración. Este patrón le permite comprobar si el plan de ejecución coincide con sus expectativas antes de realizar cambios en los recursos reales.
  • El parámetro -out opcional permite especificar un archivo de salida para el plan. El uso del parámetro -out garantiza que el plan que ha revisado es exactamente lo que se aplica.

6. Aplicación de un plan de ejecución de Terraform

Ejecute terraform apply para aplicar el plan de ejecución a su infraestructura en la nube.

terraform apply main.tfplan

Puntos clave:

  • El comando terraform apply de ejemplo asume que ejecutó terraform plan -out main.tfplan previamente.
  • Si especificó un nombre de archivo diferente para el parámetro -out, use ese mismo nombre de archivo en la llamada a terraform apply.
  • Si no ha utilizado el parámetro -out, llame a terraform apply sin ningún parámetro.

7. Verificación de los resultados

  1. En la salida del comando terraform apply, verá los valores de lo siguiente:

    • Nombre de dominio completo de la máquina virtual
    • Nombre de dominio completo de Jumpbox
    • Dirección IP de Jumpbox
  2. Vaya a la dirección URL de la máquina virtual para confirmar una página predeterminada con el texto Welcome to nginx! (Le damos la bienvenida a nginx!).

  3. Use SSH para conectarse a la máquina virtual de Jumpbox con el nombre de usuario definido en el archivo de variables y la contraseña que especificó cuando ejecutó terraform apply. Por ejemplo: ssh azureuser@<ip_address>.

8. Limpieza de recursos

Eliminación del conjunto de escalado de máquinas virtuales

Cuando ya no necesite los recursos creados a través de Terraform, realice los pasos siguientes:

  1. Ejecute el comando terraform plan y especifique la marca destroy.

    terraform plan -destroy -out main.destroy.tfplan
    

    Puntos clave:

    • El comando terraform plan crea un plan de ejecución, pero no lo ejecuta. En su lugar, determina qué acciones son necesarias para crear la configuración especificada en los archivos de configuración. Este patrón le permite comprobar si el plan de ejecución coincide con sus expectativas antes de realizar cambios en los recursos reales.
    • El parámetro -out opcional permite especificar un archivo de salida para el plan. El uso del parámetro -out garantiza que el plan que ha revisado es exactamente lo que se aplica.
  2. Ejecute terraform apply para aplicar el plan de ejecución.

    terraform apply main.destroy.tfplan
    

Eliminación de la imagen de Packer y el grupo de recursos

Ejecute az group delete para eliminar el grupo de recursos que se ha usado para contener la imagen de Packer. También se elimina la imagen de Packer.

az group delete --name myPackerImages --yes

Solución de problemas de Terraform en Azure

Solución de problemas comunes al usar Terraform en Azure

Pasos siguientes