Compartir vía


Comience con el chat usando su propio ejemplo de datos para Python

En este artículo se muestra cómo implementar y ejecutar el chat con su propio ejemplo de datos para Python. En este ejemplo se implementa una aplicación de chat mediante Python, Azure OpenAI Service y Generación aumentada de recuperación (RAG) en Búsqueda de Azure AI para obtener respuestas sobre los beneficios de los empleados en una empresa ficticia. La aplicación se ha inicializado con archivos PDF que incluyen el manual del empleado, un documento de beneficios y una lista de roles y expectativas de la empresa.

Siguiendo las instrucciones de este artículo, podrá:

  • Implemente una aplicación de chat en Azure.
  • Obtenga respuestas sobre los beneficios para empleados.
  • Cambie la configuración para modificar el comportamiento de las respuestas.

Una vez completado este procedimiento, puede comenzar a modificar el nuevo proyecto con su código personalizado.

Este artículo forma parte de una colección de artículos que muestran cómo crear una aplicación de chat mediante Azure OpenAI Service y Búsqueda de Azure AI.

Otros artículos de la colección son:

Nota:

En este artículo se usan una o varias plantillas de aplicaciones de IA como base para los ejemplos e instrucciones del artículo. Las plantillas de aplicaciones de IA le proporcionan implementaciones de referencia bien mantenidas y fáciles de implementar que le ayudan a garantizar un punto inicial de alta calidad para sus aplicaciones de IA.

Introducción a la arquitectura

En el siguiente diagrama se muestra una arquitectura sencilla de la aplicación de chat:

Diagrama que muestra la arquitectura del cliente a la aplicación back-end.

Entre los componentes clave de la arquitectura se incluyen:

  • Una aplicación web para hospedar la experiencia de chat interactivo.
  • Un recurso de Búsqueda de Azure AI para obtener respuestas de sus propios datos.
  • Un Azure OpenAI Service para proporcionar:
    • Palabras clave para mejorar la búsqueda sobre sus propios datos.
    • Respuestas del modelo OpenAI.
    • Incrustaciones del modelo ada

Costos

La mayoría de los recursos de esta arquitectura utilizan un nivel de precios básico o de consumo. La tarifa del consumo se basa en el uso, lo que significa que solo paga por lo que utiliza. Para completar este artículo, habrá que pagar una tasa, pero será mínima. Una vez que haya terminado con el artículo, puede eliminar los recursos para dejar de incurrir en cargos.

Obtenga más información sobre el coste en el repositorio de ejemplo.

Requisitos previos

Hay disponible un entorno contenedor de desarrollo con todas las dependencias necesarias para completar este artículo. Puede ejecutar el contenedor de desarrollo en GitHub Codespaces (en un navegador) o localmente utilizando Visual Studio Code.

Para usar este artículo, necesita los siguientes requisitos previos:

  • Una suscripción a Azure: cree una cuenta gratuita.
  • Permisos de la cuenta Azure: Su cuenta Azure debe tener permisos Microsoft.Authorization/roleAssignments/write, como Administrador de acceso de usuario o Propietario.
  • Acceso concedido a Azure OpenAI en la suscripción de Azure que quiera. Actualmente, solo la aplicación concede acceso a este servicio. Para solicitar acceso a Azure OpenAI, rellene el formulario en https://aka.ms/oai/access. Si tiene algún problema, abra una incidencia en este repositorio para ponerse en contacto con nosotros.
  • GitHub

Entorno de desarrollo abierto

Comience ahora con un entorno de desarrollo que tenga todas las dependencias instaladas para completar este artículo.

GitHub Codespaces ejecuta un contenedor de desarrollo administrado por GitHub con Visual Studio Code para la web como interfaz de usuario. Para obtener el entorno de desarrollo más sencillo, utilice Codespaces de GitHub de modo que tenga las herramientas y dependencias de desarrollador correctas preinstaladas para completar este artículo.

Importante

Todas las cuentas de GitHub pueden usar Codespaces durante un máximo de 60 horas gratis cada mes con 2 instancias principales. Para obtener más información, consulte Almacenamiento y horas de núcleo incluidas mensualmente en GitHub Codespaces.

  1. Inicie el proceso para crear una nueva instancia de GitHub Codespace en la rama main del repositorio de GitHub Azure-Samples/azure-search-openai-demo.

  2. Haga clic con el botón derecho del ratón en el botón siguiente y seleccione Abrir vínculo en ventanas nuevas para disponer al mismo tiempo del entorno de desarrollo y de la documentación.

    Abrir en GitHub Codespaces

  3. En la página Crear codespace, revise las opciones de configuración de codespace y, después, seleccione Crear nuevo codespace

    Captura de pantalla de la pantalla de confirmación antes de crear un nuevo codespace.

  4. Espere a que se inicie Codespace. Este proceso de startup puede tardar unos minutos.

  5. En el terminal de la parte inferior de la pantalla, inicie sesión en Azure con Azure Developer CLI.

    azd auth login
    
  6. Copie el código del terminal y péguelo en un navegador. Siga las instrucciones para autenticarse con su cuenta Azure.

  7. Las tareas restantes de este artículo tienen lugar en el contexto de este contenedor de desarrollo.

Implementación y ejecución

El repositorio de ejemplo contiene todo el código y los archivos de configuración necesarios para implementar una aplicación de chat en Azure. Los siguientes pasos le guiarán a través del proceso de implementación de la muestra en Azure.

Implementación de la aplicación de chat en Azure

Importante

Los recursos Azure creados en esta sección incurren en costes inmediatos, principalmente del recurso Azure AI Search. Estos recursos pueden acumular costes incluso si interrumpe el comando antes de que se ejecute por completo.

  1. Ejecute el siguiente comando de la Azure Developer CLI para aprovisionar los recursos de Azure e implementar el código fuente:

    azd up
    
  2. Si se le pide que introduzca un nombre de entorno, procure que sea corto y en minúsculas. Por ejemplo, myenv. Se usa como parte del nombre del grupo de recursos.

  3. Cuando se le solicite, seleccione una suscripción en la que crear los recursos.

  4. Cuando se le pida que seleccione una ubicación la primera vez, seleccione una ubicación cercana. Esta ubicación se utiliza para la mayoría de los recursos, incluido el hospedaje.

  5. Si se le pide una ubicación para el modelo OpenAI o para el recurso de Documento de inteligencia, seleccione la ubicación más próxima. Si está disponible la misma ubicación que la primera, selecciónela.

  6. Espere 5 o 10 minutos después de implementar la aplicación antes de continuar.

  7. Una vez que la aplicación se ha implementado correctamente, aparece una URL en el terminal.

    Captura de pantalla de la aplicación implementada como se indica al final del proceso azd up de la CLI de AZD.

  8. Seleccione esa URL etiquetada (✓) Done: Deploying service webapp para abrir la aplicación de chat en un navegador.

    Captura de pantalla de la aplicación de chat en el explorador que muestra varias sugerencias para la entrada de chat y el cuadro de texto de chat para escribir una pregunta.

Utilice la aplicación de chat para obtener respuestas de archivos PDF

La aplicación de chat está precargada con información sobre los beneficios de los empleados a partir de archivos PDF. Puede utilizar la aplicación de chat para hacer preguntas sobre los beneficios. Los siguientes pasos le guiarán a través del proceso de uso de la aplicación de chat. Sus respuestas podrían variar a medida que se actualizan los modelos subyacentes.

  1. En el explorador, seleccione o escriba ¿Qué ocurre en una revisión de rendimiento? en el cuadro de texto del chat.

    Captura de pantalla de la primera respuesta de la aplicación de chat.

  2. De la respuesta, seleccione una cita.

    Captura de pantalla de la primera respuesta de la aplicación de chat con su cita resaltada en un cuadro rojo.

  3. En el panel derecho, use las pestañas para entender cómo se ha generado la respuesta.

    Pestaña Descripción
    Proceso de ideas Este es un script de las interacciones en el chat. Puede ver la pregunta del sistema (content) y su pregunta de usuario (content).
    Contenido adicional Esto incluye la información para responder a su pregunta y el material de origen. El número de citas del material fuente se indica en los Configuración de desarrollador. El valor predeterminado es 3.
    Referencia bibliográfica Esto muestra la página original que contiene la cita.
  4. Una vez que haya terminado, vuelva a seleccionar la pestaña seleccionada para cerrar el panel.

Utilice la configuración de la aplicación de chat para cambiar el comportamiento de las respuestas

La inteligencia del chat viene determinada por el modelo OpenAI y los ajustes que se utilizan para interactuar con el modelo.

Captura de pantalla de la configuración del desarrollador de chat.

Configuración Descripción
Anular plantilla de solicitud Invalida la solicitud usada para generar la respuesta en función de la pregunta y los resultados de búsqueda.
Temperatura Define la temperatura de la solicitud en el LLM que genera la respuesta. Las temperaturas más altas dan lugar a respuestas más creativas, pero pueden tener menos fundamento.
Seed Define una inicialización para mejorar la capacidad de reproducción de las respuestas del modelo. La inicialización puede ser cualquier entero.
Puntuación mínima de búsqueda Define una puntuación mínima para los resultados de búsqueda que devuelve la búsqueda de Azure AI. El intervalo de puntuación depende de si se usa híbrido (valor predeterminado), solo vectores o solo texto.
Puntuación mínima del reclasificador Establece una puntuación mínima para los resultados de búsqueda que devuelve el reclasificador semántico. La puntuación siempre oscila entre 0 y 4. Cuanto mayor sea la puntuación, más relevante semánticamente será el resultado para la pregunta.
Recuperar esta cantidad de resultados Define el número de resultados de búsqueda que se van a recuperar de la búsqueda de Azure AI. Más resultados podrían aumentar la probabilidad de encontrar la respuesta correcta, pero podrían dar lugar a que el modelo se pierda. Puede ver estos orígenes devueltos en las pestañas Proceso de pensamiento y Contenido adicional de la cita.
Excluir categoría Especifica una categoría que se debe excluir de los resultados de la búsqueda. No se usan categorías en el conjunto de datos predeterminado.
Utilizar un clasificador semántico para la recuperación Habilita el clasificador semántico de Búsqueda de Azure AI, un modelo que vuelve a clasificar los resultados de búsqueda en función de la similitud semántica con la consulta del usuario.
Uso de subtítulos semánticos Envía subtítulos semánticos al LLM en lugar del resultado de búsqueda completo. Un subtítulo semántico se extrae de un resultado de búsqueda durante el proceso de clasificación semántica.
Sugerir preguntas de seguimiento Solicita al LLM que sugiera preguntas de seguimiento basadas en la consulta del usuario.
Modo de recuperación Define el modo de recuperación de la consulta de Búsqueda de Azure AI. Vectores + Texto (híbrido) usa una combinación de vector de búsqueda y búsqueda de texto completo, Vectores usa solo vector de búsqueda y Texto solo usa búsqueda de texto completo. Híbrido suele ser óptimo.
Transmitir respuestas de finalización de chat Transmite de forma continua la respuesta a la interfaz de usuario de chat a medida que se genera.

Los siguientes pasos le guiarán a través del proceso de cambio de la configuración.

  1. En el explorador, seleccione la pestaña Configuración del desarrollador.

  2. Active la casilla Sugerir preguntas de seguimiento y vuelva a formular la misma pregunta.

    What happens in a performance review?
    

    El chat ha devuelto preguntas de seguimiento sugeridas, como las siguientes:

    1. What is the frequency of performance reviews?
    2. How can employees prepare for a performance review?
    3. Can employees dispute the feedback received during the performance review?
    
  3. En la pestaña Configuración, anule la selección de Utilizar el clasificador semántico para la recuperación.

  4. ¿Vuelve a hacer la misma pregunta?

    What happens in a performance review?
    
  5. ¿Cuál es la diferencia entre las respuestas?

    Con el clasificador semántico: durante una revisión de rendimiento en Contoso Electronics, los empleados tendrán la oportunidad de discutir sus éxitos y desafíos en el lugar de trabajo (1). La revisión proporcionará comentarios positivos y constructivos para ayudar a los empleados a desarrollar y crecer en sus roles (1). El empleado recibirá un resumen escrito de la revisión de rendimiento, que incluirá una clasificación de su rendimiento, comentarios y objetivos para el próximo año (1). La revisión del rendimiento es un diálogo bidireccional entre los administradores y los empleados (1).

    Sin el clasificador semántico: durante una revisión de rendimiento en Contoso Electronics, los empleados tienen la oportunidad de discutir sus éxitos y desafíos en el lugar de trabajo. Se proporcionan comentarios positivos y útiles para ayudar a los empleados a desarrollar y crecer en sus roles. Se proporciona un resumen por escrito de la revisión de rendimiento, incluida una clasificación del rendimiento, los comentarios y los objetivos del próximo año. La revisión es un diálogo bidireccional entre los administradores y los empleados (1).

Limpieza de recursos

Limpieza de los recursos de Azure

Los recursos Azure creados en este artículo se facturan a su suscripción Azure. Si no espera necesitar estos recursos en el futuro, elimínelos para evitar incurrir en más gastos.

Ejecute el siguiente comando de la Azure Developer CLI para eliminar los recursos de Azure y eliminar el código de origen:

azd down --purge --force

Los modificadores proporcionan:

  • purge: los recursos eliminados se purgan inmediatamente. Esto le permite reutilizar el TPM de Azure OpenAI.
  • force: la eliminación se produce de forma silenciosa, sin necesidad de consentimiento del usuario.

Limpiar GitHub Codespaces

La eliminación del entorno de GitHub Codespaces garantiza que pueda maximizar la cantidad de derechos de horas gratuitas por núcleo que obtiene para su cuenta.

Importante

Para obtener más información sobre los derechos de la cuenta de GitHub, consulte Almacenamiento y horas de núcleo incluidas mensualmente en GitHub Codespaces.

  1. Inicie sesión en el panel de GitHub Codespaces (https://github.com/codespaces).

  2. Busque los espacios de código que se ejecutan actualmente procedentes del repositorio de GitHub Azure-Samples/azure-search-openai-demo.

    Captura de pantalla de todos los espacios de código en ejecución, incluidos su estado y las plantillas.

  3. Abra el menú contextual del codespace y, a continuación, seleccione Eliminar.

    Captura de pantalla del menú contextual de un solo codespace con la opción para eliminar resaltada.

Obtener ayuda

Este repositorio de muestras ofrece información para la resolución de problemas.

Si su problema no se resuelve, regístrelo en el apartado de problemas del repositorio.

Pasos siguientes