cláusula UNPIVOT
Se aplica a: Databricks SQL Databricks Runtime 12.2 LTS y versiones posteriores.
Transforma las filas de la tabla de referencia anterior rotando grupos de columnas en filas y consolidando las columnas enumeradas: una primera nueva columna contiene como valores los nombres originales de los grupos de columnas (o sus alias), seguida de un grupo de columnas con los valores de cada grupo de columnas.
Sintaxis
UNPIVOT [ { INCLUDE NULLS | EXCLUDE NULLS } ]
{ single_value | multi_value }
( value_column
FOR unpivot_column IN ( { column_name [ column_alias ] } [, ...] ) )
[ table_alias ]
single_value
( value_column
FOR unpivot_column IN ( { column_name [ column_alias ] } [, ...] ) )
multi_value
( ( value_column [, ...] )
FOR unpivot_column IN ( { ( column_name [, ...] ) [ column_alias ] } [, ...] ) )
Parámetros
INCLUDE NULLS
oEXCLUDE NULLS
Indica si las filas con
NULL
envalue_column
se van a filtrar o no. El valor predeterminado esEXCLUDE NULLS
.-
Alias de columna no calificado. Esta columna contendrá los valores. El tipo de cada
value_column
es el tipo menos común de los tipos de columnascolumn_name
correspondientes. -
Alias de columna no calificado. Esta columna contendrá los nombres de todos los elementos
column_name
girados o suscolumn_alias
. El tipo deunpivot_column
esSTRING
.En el caso de un valor
UNPIVOT
múltiple, el valor será la concatenación de los elementos'_'
separados porcolumn_name
, si no haycolumn_alias
. -
Identifica una columna relacionada cuya dinamización se anulará. El nombre puede ser calificado. Todos los elementos
column_name
deben compartir un tipo menos común. -
Nombre opcional usado en
unpivot_column
. -
De manera opcional, especifica una etiqueta para la tabla resultante. Si
table_alias
incluyecolumn_identifier
, su número debe coincidir con el número de columnas generadas porUNPIVOT
.
Resultado
Una tabla temporal con el formato siguiente:
- Todas las columnas de la
table_reference
, excepto las denominadas comocolumn_name
. - El
unpivot_column
de tipoSTRING
. - Los elementos
value_column
de los tipos menos comunes de sus elementoscolumn_name
coincidentes.
Ejemplos
- A single column UNPIVOT
> CREATE OR REPLACE TEMPORARY VIEW sales(location, year, q1, q2, q3, q4) AS
VALUES ('Toronto' , 2020, 100 , 80 , 70, 150),
('San Francisco', 2020, NULL, 20 , 50, 60),
('Toronto' , 2021, 110 , 90 , 80, 170),
('San Francisco', 2021, 70 , 120, 85, 105);
> SELECT *
FROM sales UNPIVOT INCLUDE NULLS
(sales FOR quarter IN (q1 AS `Jan-Mar`,
q2 AS `Apr-Jun`,
q3 AS `Jul-Sep`,
sales.q4 AS `Oct-Dec`));
location year quarter sales
—------------ —--- —------ —-----
Toronto 2020 Jan-Mar 100
Toronto 2020 Apr-Jun 80
Toronto 2020 Jul-Sep 70
Toronto 2020 Oct-Dec 150
San Francisco 2020 Jan-Mar null
San Francisco 2020 Apr-Jun 20
San Francisco 2020 Jul-Sep 50
San Francisco 2020 Oct-Dec 60
Toronto 2021 Jan-Mar 110
Toronto 2021 Apr-Jun 90
Toronto 2021 Jul-Sep 80
Toronto 2021 Oct-Dec 170
San Francisco 2021 Jan-Mar 70
San Francisco 2021 Apr-Jun 120
San Francisco 2021 Jul-Sep 85
San Francisco 2021 Oct-Dec 105
-- This is equivalent to:
> SELECT location, year,
inline(arrays_zip(array('Jan-Mar', 'Apr-Jun', 'Jul-Sep', 'Oct-Dec'),
array(q1 , q2 , q3 , q4)))
AS (quarter, sales)
FROM sales;
- A multi column UNPIVOT
> CREATE OR REPLACE TEMPORARY VIEW oncall
(year, week, area , name1 , email1 , phone1 , name2 , email2 , phone2) AS
VALUES (2022, 1 , 'frontend', 'Freddy', 'fred@alwaysup.org' , 15551234567, 'Fanny' , 'fanny@lwaysup.org' , 15552345678),
(2022, 1 , 'backend' , 'Boris' , 'boris@alwaysup.org', 15553456789, 'Boomer', 'boomer@lwaysup.org', 15554567890),
(2022, 2 , 'frontend', 'Franky', 'frank@lwaysup.org' , 15555678901, 'Fin' , 'fin@alwaysup.org' , 15556789012),
(2022, 2 , 'backend' , 'Bonny' , 'bonny@alwaysup.org', 15557890123, 'Bea' , 'bea@alwaysup.org' , 15558901234);
> SELECT *
FROM oncall UNPIVOT ((name, email, phone) FOR precedence IN ((name1, email1, phone1) AS primary,
(name2, email2, phone2) AS secondary));
year week area precedence name email phone
---- ---- -------- ---------- ------ ------------------ -----------
2022 1 frontend primary Freddy fred@alwaysup.org 15551234567
2022 1 frontend secondary Fanny fanny@lwaysup.org 15552345678
2022 1 backend primary Boris boris@alwaysup.org 15553456789
2022 1 backend secondary Boomer boomer@lwaysup.org 15554567890
2022 2 frontend primary Franky frank@lwaysup.org 15555678901
2022 2 frontend secondary Fin fin@alwaysup.org 15556789012
2022 2 backend primary Bonny bonny@alwaysup.org 15557890123
2022 2 backend secondary Bea bea@alwaysup.org 15558901234
-- This is equivalent to:
> SELECT year, week, area,
inline(arrays_zip(array('primary', 'secondary'),
array(name1, name2),
array(email1, email2),
array(phone1, phone2)))
AS (precedence, name, email, phone)
FROM oncall;