Compartir vía


Databricks Runtime 8.4 para ML (EoS)

Nota:

El soporte técnico con esta versión de Databricks Runtime ha finalizado. Para obtener la fecha de finalización del soporte técnico, consulte Historial de finalización del soporte técnico. Para ver todas las versiones de Databricks Runtime con soporte técnico, consulte las notas de la versión de Databricks Runtime versiones y compatibilidad.

Databricks publicó esta versión en julio de 2021.

Databricks Runtime 8.4 para Machine Learning proporciona un entorno listo para usar de aprendizaje automático y ciencia de datos basado en Databricks Runtime 8.4 (EoS). Databricks Runtime ML contiene muchas bibliotecas populares de aprendizaje automático, incluidas TensorFlow, PyTorch y XGBoost. También admite entrenamiento de aprendizaje profundo distribuido mediante Horovod.

Para más información, incluidas las instrucciones para crear un clúster de Databricks Runtime ML, consulte IA y aprendizaje automático en Databricks.

Nuevas características y mejoras

Databricks Runtime 8.4 ML se basa en Databricks Runtime 8.4. Para más información sobre las novedades de Databricks Runtime 8.4, incluyendo Apache Spark MLlib y SparkR, consulte las notas de la versión de Databricks Runtime 8.4 (EoS).

FeatureStoreClient 0.3.2

  • Permita nombres de características y tablas de características que entren en conflicto con palabras reservadas de SQL.
  • Valide que los dataframes proporcionados son de PySpark (pyspark.sql.dataframe.DataFrame).

AutoML 1.1.0

  • La versión actualizada de AutoML que se incluye con Databricks Runtime 8.4 ML lleva algunas correcciones de errores y mejoras de estabilidad.
  • La clasificación de AutoML ahora también ejecuta pruebas con LGBMClassifier
  • La regresión de AutoML ahora también ejecuta pruebas con LGBMRegressor

Cambios importantes en el entorno de Python de Databricks Runtime ML

Consulte Databricks Runtime 8.4 (EoS) para conocer los cambios importantes en el entorno de Python de Databricks Runtime. Para obtener una lista completa de los paquetes de Python instalados y sus versiones, consulte Bibliotecas de Python.

Paquetes de Python actualizados

  • koalas 1.8.0 -> 1.8.1
  • horovod 0.21.3 -> 0.22.1
  • mleap 0.16.1 -> 0.17.0
  • mlflow 1.16.0 -> 1.18.0
  • pandas-profiling 2.11.0 -> 3.0.0
  • petastorm 0.10.0 -> 0.11.1
  • pytorch 1.8.1 -> 1.9.0
  • tensorboard 2.4.1 -> 2.5.0
  • tensorflow 2.4.1 -> 2.5.0
  • torchvision 0.9.1 -> 0.10.0
  • xgboost 1.4.1 -> 1.4.2

En desuso

Los siguientes cambios están en desuso y se quitarán en Databricks Runtime 9.0:

  • En HorovodRunner, la configuración de np=0, donde np es el número de procesos paralelos que se usarán para el trabajo de Horovod.
  • Intel Math Kernel Library (Intel MKL), junto con tipos de bajada de paquetes que dependen de este.
  • La biblioteca de Python azure-core para las excepciones y los módulos básicos de Azure
  • El cliente de la biblioteca de Python azure-storage-blob para interactuar con el servicio Azure Storage Blob
  • La biblioteca de Python msrest para la generación de Swagger de AutoRest
  • La biblioteca de Python docker para la API de Docker Engine
  • La biblioteca de Python querystring-parser para analizar consultas en Python o Django
  • La biblioteca de Python intel-openmp para crear software multiproceso

Entorno del sistema

El entorno del sistema de Databricks Runtime 8.4 ML se diferencia del de Databricks Runtime 8.4 en lo siguiente:

Bibliotecas

En las secciones siguientes se enumeran las bibliotecas incluidas en Databricks Runtime 8.4 ML, que difieren de las incluidas en Databricks Runtime 8.4.

En esta sección:

Bibliotecas de nivel superior

Databricks Runtime 8.4 ML incluye las siguientes bibliotecas de nivel superior:

Bibliotecas de Python

Databricks Runtime 8.4 ML usa Conda para la administración de los paquetes de Python e incluye muchos paquetes populares de ML.

Además de los paquetes especificados en los entornos de Conda en las secciones siguientes, Databricks Runtime 8.4 ML también incluye los paquetes siguientes:

  • hyperopt 0.2.5.db2
  • sparkdl 2.1.0.db4
  • feature_store 0.3.2
  • automl 1.1.0

Bibliotecas de Python en clústeres de CPU

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.7.4=py38h27cfd23_1
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38h06a4308_0
  - async-timeout=3.0.1=py38h06a4308_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=pyhd3eb1b0_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38h06a4308_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - bzip2=1.0.8=h7b6447c_0
  - ca-certificates=2021.5.25=h06a4308_1
  - cachetools=4.2.2=pyhd3eb1b0_0
  - certifi=2021.5.30=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cpuonly=1.0=0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=pyhd3eb1b0_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38h06a4308_1
  - entrypoints=0.3=py38_0
  - ffmpeg=4.2.2=h20bf706_0
  - flask=1.1.2=pyhd3eb1b0_0
  - freetype=2.10.4=h5ab3b9f_0
  - fsspec=0.8.3=py_0
  - future=0.18.2=py38_1
  - gast=0.4.0=py_0
  - gitdb=4.0.7=pyhd3eb1b0_0
  - gitpython=3.1.12=pyhd3eb1b0_1
  - gmp=6.1.2=h6c8ec71_1
  - gnutls=3.6.15=he1e5248_0
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - gunicorn=20.0.4=py38h06a4308_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=pyhd3eb1b0_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lame=3.100=h7b6447c_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libidn2=2.3.1=h27cfd23_0
  - libopus=1.3.1=h7b6447c_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtasn1=4.16.0=h27cfd23_0
  - libtiff=4.1.0=h2733197_1
  - libunistring=0.9.10=h27cfd23_0
  - libuv=1.40.0=h7b6447c_0
  - libvpx=1.7.0=h439df22_0
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.3=py38h06a4308_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=5.1.0=py38h27cfd23_2
  - ncurses=6.2=he6710b0_1
  - nettle=3.7.3=hbbd107a_1
  - networkx=2.5.1=pyhd3eb1b0_0
  - ninja=1.10.2=hff7bd54_1
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openh264=2.1.0=hd408876_0
  - openssl=1.1.1k=h27cfd23_0
  - packaging=20.4=py_0
  - pandas=1.1.5=py38ha9443f7_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.3=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4
  - python-dateutil=2.8.1=pyhd3eb1b0_0
  - python-editor=1.0.4=py_0
  - pytorch=1.9.0=py3.8_cpu_0
  - pytz=2020.5=pyhd3eb1b0_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7.2=pyhd3eb1b0_1
  - s3transfer=0.3.6=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h27cfd23_2
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.5=pyhd3eb1b0_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38h06a4308_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - torchvision=0.10.0=py38_cpu
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=pyhd3eb1b0_0
  - typing-extensions=3.7.4.3=hd3eb1b0_0
  - typing_extensions=3.7.4.3=pyh06a4308_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=pyhd3eb1b0_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - x264=1!157.20191217=h7b6447c_0
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - argon2-cffi==20.1.0
    - astunparse==1.6.3
    - async-generator==1.10
    - azure-core==1.11.0
    - azure-storage-blob==12.7.1
    - bleach==3.3.0
    - bottleneck==1.3.2
    - convertdate==2.3.2
    - databricks-cli==0.14.3
    - defusedxml==0.7.1
    - diskcache==5.2.1
    - docker==4.4.4
    - facets-overview==1.0.0
    - flatbuffers==1.12
    - grpcio==1.34.1
    - h5py==3.1.0
    - hijri-converter==2.1.3
    - holidays==0.10.5.2
    - horovod==0.22.1
    - htmlmin==0.1.12
    - imagehash==4.2.0
    - ipywidgets==7.6.3
    - joblibspark==0.3.0
    - jsonschema==3.2.0
    - jupyterlab-pygments==0.1.2
    - jupyterlab-widgets==1.0.0
    - keras-nightly==2.5.0.dev2021032900
    - keras-preprocessing==1.1.2
    - koalas==1.8.1
    - korean-lunar-calendar==0.2.1
    - llvmlite==0.36.0
    - missingno==0.4.2
    - mistune==0.8.4
    - mleap==0.17.0
    - mlflow-skinny==1.18.0
    - msrest==0.6.21
    - multimethod==1.4
    - nbclient==0.5.3
    - nbconvert==6.1.0
    - nbformat==5.1.3
    - nest-asyncio==1.5.1
    - notebook==6.4.0
    - numba==0.53.1
    - opt-einsum==3.3.0
    - pandas-profiling==3.0.0
    - pandocfilters==1.4.3
    - petastorm==0.11.1
    - phik==0.11.2
    - prometheus-client==0.11.0
    - pyarrow==1.0.1
    - pydantic==1.8.2
    - pymeeus==0.5.11
    - pyrsistent==0.18.0
    - pywavelets==1.1.1
    - pyyaml==5.4.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - send2trash==1.7.1
    - shap==0.39.0
    - slicer==0.0.7
    - spark-tensorflow-distributor==0.1.0
    - tangled-up-in-unicode==0.1.0
    - tensorboard==2.5.0
    - tensorboard-data-server==0.6.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow-cpu==2.5.0
    - tensorflow-estimator==2.5.0
    - termcolor==1.1.0
    - terminado==0.10.1
    - testpath==0.5.0
    - visions==0.7.1
    - webencodings==0.5.1
    - widgetsnbextension==3.5.1
    - xgboost==1.4.2
prefix: /databricks/conda/envs/databricks-ml

Bibliotecas de Python en clústeres de GPU

name: databricks-ml-gpu
channels:
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.7.4=py38h27cfd23_1
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38h06a4308_0
  - async-timeout=3.0.1=py38h06a4308_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=pyhd3eb1b0_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38h06a4308_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - ca-certificates=2021.5.25=h06a4308_1
  - cachetools=4.2.2=pyhd3eb1b0_0
  - certifi=2021.5.30=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=pyhd3eb1b0_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38h06a4308_1
  - entrypoints=0.3=py38_0
  - flask=1.1.2=pyhd3eb1b0_0
  - freetype=2.10.4=h5ab3b9f_0
  - fsspec=0.8.3=py_0
  - future=0.18.2=py38_1
  - gast=0.4.0=py_0
  - gitdb=4.0.7=pyhd3eb1b0_0
  - gitpython=3.1.12=pyhd3eb1b0_1
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - gunicorn=20.0.4=py38h06a4308_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=pyhd3eb1b0_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_1
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.3=py38h06a4308_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=5.1.0=py38h27cfd23_2
  - ncurses=6.2=he6710b0_1
  - networkx=2.5.1=pyhd3eb1b0_0
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openssl=1.1.1k=h27cfd23_0
  - packaging=20.4=py_0
  - pandas=1.1.5=py38ha9443f7_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.3=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4
  - python-dateutil=2.8.1=pyhd3eb1b0_0
  - python-editor=1.0.4=py_0
  - pytz=2020.5=pyhd3eb1b0_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7.2=pyhd3eb1b0_1
  - s3transfer=0.3.6=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h27cfd23_2
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.5=pyhd3eb1b0_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38h06a4308_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=pyhd3eb1b0_0
  - typing-extensions=3.7.4.3=hd3eb1b0_0
  - typing_extensions=3.7.4.3=pyh06a4308_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=pyhd3eb1b0_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - argon2-cffi==20.1.0
    - astunparse==1.6.3
    - async-generator==1.10
    - azure-core==1.11.0
    - azure-storage-blob==12.7.1
    - bleach==3.3.0
    - bottleneck==1.3.2
    - convertdate==2.3.2
    - databricks-cli==0.14.3
    - defusedxml==0.7.1
    - diskcache==5.2.1
    - docker==4.4.4
    - facets-overview==1.0.0
    - flatbuffers==1.12
    - grpcio==1.34.1
    - h5py==3.1.0
    - hijri-converter==2.1.3
    - holidays==0.10.5.2
    - horovod==0.22.1
    - htmlmin==0.1.12
    - imagehash==4.2.0
    - ipywidgets==7.6.3
    - joblibspark==0.3.0
    - jsonschema==3.2.0
    - jupyterlab-pygments==0.1.2
    - jupyterlab-widgets==1.0.0
    - keras-nightly==2.5.0.dev2021032900
    - keras-preprocessing==1.1.2
    - koalas==1.8.1
    - korean-lunar-calendar==0.2.1
    - llvmlite==0.36.0
    - missingno==0.4.2
    - mistune==0.8.4
    - mleap==0.17.0
    - mlflow-skinny==1.18.0
    - msrest==0.6.21
    - multimethod==1.4
    - nbclient==0.5.3
    - nbconvert==6.1.0
    - nbformat==5.1.3
    - nest-asyncio==1.5.1
    - notebook==6.4.0
    - numba==0.53.1
    - opt-einsum==3.3.0
    - pandas-profiling==3.0.0
    - pandocfilters==1.4.3
    - petastorm==0.11.1
    - phik==0.11.2
    - pyarrow==1.0.1
    - pydantic==1.8.2
    - pymeeus==0.5.11
    - pyrsistent==0.17.3
    - pywavelets==1.1.1
    - pyyaml==5.4.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - send2trash==1.7.1
    - shap==0.39.0
    - slicer==0.0.7
    - spark-tensorflow-distributor==0.1.0
    - tangled-up-in-unicode==0.1.0
    - tensorboard==2.5.0
    - tensorboard-data-server==0.6.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow==2.5.0
    - tensorflow-estimator==2.5.0
    - termcolor==1.1.0
    - terminado==0.10.1
    - testpath==0.5.0
    - torch==1.9.0
    - torchvision==0.10.0
    - visions==0.7.1
    - webencodings==0.5.1
    - widgetsnbextension==3.5.1
    - xgboost==1.4.2
prefix: /databricks/conda/envs/databricks-ml-gpu

Paquetes de Spark que contienen módulos de Python

Paquete de Spark Módulo de Python Versión
graphframes graphframes 0.8.1-db3-spark3.1

Bibliotecas de R

Las bibliotecas de R son idénticas a las bibliotecas de R de Databricks Runtime 8.4.

Bibliotecas de Java y Scala (clúster de Scala 2.12)

Además de las bibliotecas de Java y Scala de Databricks Runtime 8.4, Databricks Runtime 8.4 ML contiene los siguientes archivos JAR:

Clústeres de CPU

Identificador de grupo Identificador de artefacto Versión
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.4.1
ml.dmlc xgboost4j_2.12 1.4.1
org.mlflow mlflow-client 1.18.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Clústeres de GPU

Identificador de grupo Identificador de artefacto Versión
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark-gpu_2.12 1.4.1
ml.dmlc xgboost4j-gpu_2.12 1.4.1
org.mlflow mlflow-client 1.18.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0