Databricks Runtime 7.2 para ML (EoS)
Nota:
El soporte técnico con esta versión de Databricks Runtime ha finalizado. Para obtener la fecha de finalización del soporte técnico, consulte Historial de finalización del soporte técnico. Para ver todas las versiones de Databricks Runtime con soporte técnico, consulte las notas de la versión de Databricks Runtime versiones y compatibilidad.
Databricks publicó esta versión en agosto de 2020.
Databricks Runtime 7.2 para Machine Learning proporciona un entorno listo para usar de aprendizaje automático y ciencia de datos basado en Databricks Runtime 7.2 (EoS). Databricks Runtime ML contiene muchas bibliotecas populares de aprendizaje automático, incluidas TensorFlow, PyTorch y XGBoost. También admite entrenamiento de aprendizaje profundo distribuido mediante Horovod.
Para más información, incluidas las instrucciones para crear un clúster de Databricks Runtime ML, consulte IA y aprendizaje automático en Databricks.
Nuevas características y cambios importantes
Databricks Runtime 7.2 ML se basa en Databricks Runtime 7.2. Para más información sobre las novedades de Databricks Runtime 7.2, entre las que se incluyen Apache Spark MLlib y SparkR, consulte las notas de la versión de Databricks Runtime 7.2 (EoS).
Cambios importantes en el entorno de Python de Databricks Runtime ML
En esta sección se describen los cambios más importantes del entorno instalado de Python con Databricks Runtime ML, en comparación con Databricks 7.1 para ML (EoS). También debe revisar los cambios principales en el entorno base de Python de Databricks Runtime en Databricks Runtime 7.2 (EoS). Para obtener una lista completa de los paquetes de Python instalados y sus versiones, consulte Bibliotecas de Python.
Paquetes de Python agregados
- joblibspark: 0.2.0
Paquetes de Python actualizados
- plotly 4.8.1 -> 4.8.2
- mleap 0.16.0 -> 0.16.1
Cambios importantes en el entorno del sistema de Databricks Runtime ML
Paquetes del sistema agregados
- xvfb
Paquetes del sistema actualizados
- ttyd 1.6.0 -> 1.6.1
Mejoras
Databricks Runtime 7.2 mejora la compatibilidad con TensorBoard. Consulte las notas de la versión de Databricks Runtime 7.2.
Entorno del sistema
El entorno del sistema de Databricks Runtime 7.2 ML se diferencia del de Databricks Runtime 7.2 en lo siguiente:
- DBUtils: Databricks Runtime ML no contiene Utilidad de biblioteca (dbutils.library) (heredada).
En su lugar, puede usar los comandos
%pip
y%conda
. Consulte Bibliotecas de Python cuyo ámbito es Notebook. - En los clústeres de GPU, Databricks Runtime ML incluye las siguientes bibliotecas de GPU de NVIDIA:
- CUDA 10.1 Update 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
Bibliotecas
En las secciones siguientes se enumeran las bibliotecas incluidas en Databricks Runtime 7.2 ML, que difieren de las incluidas en Databricks Runtime 7.2.
En esta sección:
- Bibliotecas de nivel superior
- Bibliotecas de Python
- Bibliotecas de R
- Bibliotecas de Java y Scala (clúster de Scala 2.12)
Bibliotecas de nivel superior
Databricks Runtime 7.2 ML incluye las siguientes bibliotecas de nivel superior:
- GraphFrames
- Horovod y HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Bibliotecas de Python
Databricks Runtime 7.2 ML usa Conda para la administración de los paquetes de Python, e incluye muchos paquetes populares de ML. En la sección siguiente se describe el entorno de Conda para Databricks Runtime 7.2 ML.
Python en clústeres de CPU
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.6.24=0
- cachetools=4.1.0=py_1
- certifi=2020.6.20=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_1
- pickleshare=0.7.5=py37_1001
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.8.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.1=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_1
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap=3.0.2=py_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.1=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.7.0
- azure-storage-blob==12.3.2
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.2
- gorilla==0.3.0
- horovod==0.19.5
- hyperopt==0.2.4.db2
- joblibspark==0.2.0
- keras-preprocessing==1.1.2
- koalas==1.1.0
- mleap==0.16.1
- mlflow==1.9.1
- msrest==0.6.17
- opt-einsum==3.3.0
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.7.0
- tensorflow-cpu==2.2.0
- tensorflow-estimator==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml
Python en clústeres de GPU
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.6.24=0
- cachetools=4.1.0=py_1
- certifi=2020.6.20=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_1
- pickleshare=0.7.5=py37_1001
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.8.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.1=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_1
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap=3.0.2=py_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.1=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.7.0
- azure-storage-blob==12.3.2
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.2
- gorilla==0.3.0
- horovod==0.19.5
- hyperopt==0.2.4.db2
- joblibspark==0.2.0
- keras-preprocessing==1.1.2
- koalas==1.1.0
- mleap==0.16.1
- mlflow==1.9.1
- msrest==0.6.17
- opt-einsum==3.3.0
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.7.0
- tensorflow==2.2.0
- tensorflow-estimator==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml-gpu
Paquetes de Spark que contienen módulos de Python
Paquete de Spark | Módulo de Python | Versión |
---|---|---|
graphframes | graphframes | 0.8.0-db2-spark3.0 |
Bibliotecas de R
Las bibliotecas de R son idénticas a las bibliotecas de R de Databricks Runtime 7.2.
Bibliotecas de Java y Scala (clúster de Scala 2.12)
Además de las bibliotecas de Java y Scala de Databricks Runtime 7.2, Databricks Runtime 7.2 ML contiene los siguientes archivos JAR:
Identificador de grupo | Identificador de artefacto | Versión |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.2-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.0.0 |
ml.dmlc | xgboost4j_2.12 | 1.0.0 |
org.mlflow | mlflow-client | 1.9.1 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |