Compartir vía


Databricks Runtime 6.2 para ML (EoS)

Nota:

El soporte técnico con esta versión de Databricks Runtime ha finalizado. Para obtener la fecha de finalización del soporte técnico, consulte Historial de finalización del soporte técnico. Para ver todas las versiones de Databricks Runtime con soporte técnico, consulte las notas de la versión de Databricks Runtime versiones y compatibilidad.

Databricks publicó esta versión en diciembre de 2019.

Databricks Runtime 6.2 para Machine Learning proporciona un entorno listo para usar de aprendizaje automático y ciencia de datos basado en Databricks Runtime 6.2 (EoS). Databricks Runtime ML contiene muchas bibliotecas de aprendizaje automático populares, incluidas TensorFlow, PyTorch, Keras y XGBoost. También admite entrenamiento de aprendizaje profundo distribuido mediante Horovod.

Para más información, incluidas las instrucciones para crear un clúster de Databricks Runtime ML, consulte IA y aprendizaje automático en Databricks.

Nuevas características

Databricks Runtime 6.2 ML se basa en Databricks Runtime 6.2. Para información sobre las novedades de Databricks Runtime 6.2, consulte las notas de la versión de Databricks Runtime 6.2 (EoS).

Mejoras

Bibliotecas de aprendizaje automático actualizadas

  • TensorFlow y TensorBoard: de 1.14.0 a 1.15.0. Existen dos problemas conocidos:

    • Es posible que tenga que importar módulos de TensorFlow explícitamente en la función para evitar problemas de serialización en PySpark, HorovodRunner, HyperOpt y otras bibliotecas de aprendizaje automático.
    • La pestaña "Projector" (Proyector) de TensorBoard está en blanco. Como solución alternativa, para visitar directamente la página "Projector" (Proyector), puede reemplazar #projector en la dirección URL por data/plugin/projector/projector_binary.html.
  • Keras: de 2.2.4 a 2.2.5.

    Nota:

    Si usa el back-end de TensorFlow para Keras, Databricks recomienda usar tf.keras en su lugar.

  • PyTorch: de 1.2.0 a 1.3.0.

  • tensorboardX: de 1.8 a 1.9.

    Nota:

    Como PyTorch ahora admite oficialmente TensorBoard, tensorboardX se quitará en la próxima versión principal.

  • MLflow: de 1.3.0 a 1.4.0.

    • Las API de persistencia de modelos Keras y de registro automático de TensorFlow y Keras ahora son compatibles con TensorFlow 2.0.
    • Nuevas funciones get_run, get_experiment y get_experiment_by_name.
  • Hyperopt: 0.2-db1 con integraciones de MLflow de Azure Databricks.

  • mleap-databricks-runtime a 0.15.0 e incluye mleap-xgboost-runtime.

Compatibilidad agregada con variables de difusión para SparkTrials

Anteriormente, Hyperopt con SparkTrials no se podía usar con variables de difusión de PySpark. Ahora, las variables de difusión se pueden incluir en la función fn que se pasa a fmin().

En desuso

Además de los elementos en desuso de Databricks Runtime 6.2, los siguientes paquetes están en desuso y se quitarán en la próxima versión principal:

  • TensorFrames. En su lugar, use una UDF de pandas.
  • Algunos módulos y clases del paquete de Python sparkdl. Los principales son:
    • sparkdl.HorovodEstimator. En su lugar, use sparkdl.HorovodRunner.
    • sparkdl.graph. En su lugar, use una UDF de pandas.
    • sparkdl.udf. En su lugar, use una UDF de pandas.
    • Los transformadores y estimadores que se usan en las canalizaciones de Spark ML están en desuso. Use las siguientes alternativas:
      • Use una UDF de Pandas como reemplazo de los siguientes transformadores:
        • TFImageTransformer
        • TFTransformer
        • DeepImagePredictor
        • DeepImageFeaturizer
        • KerasImageFileTransformer
        • KerasTransformer
      • KerasImageFileEstimator: para ajustar los modelos de aprendizaje profundo, use Hyperopt en su lugar.

Para obtener más detalles y alternativas recomendadas, vea los mensajes de desuso cuando use estos paquetes en un cuaderno.

Corrección de errores

En Databricks Community Edition, los roles de trabajo de PySpark ahora pueden encontrar paquetes de Spark preinstalados.

Entorno del sistema

El entorno del sistema de Databricks Runtime 6.2 ML se diferencia del de Databricks Runtime 6.2 en lo siguiente:

Bibliotecas

En las secciones siguientes se indican las bibliotecas incluidas en Databricks Runtime 6.2 ML que difieren de las incluidas en Databricks Runtime 6.2.

En esta sección:

Bibliotecas de nivel superior

Databricks Runtime 6.2 ML incluye las siguientes bibliotecas de nivel superior:

Bibliotecas de Python

Databricks Runtime 6.2 ML usa Conda para la administración de los paquetes de Python e incluye muchos paquetes populares de ML. En la sección siguiente se describe el entorno de Conda para Databricks Runtime 6.2 ML.

Python en clústeres de CPU

name: databricks-ml
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=2.0=cpu_0
  - _tflow_select=2.3.0=mkl
  - absl-py=0.8.1=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.2.2=py37_0
  - gitdb2=2.0.6=py_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.8=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - keras-applications=1.0.8=py_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.9.2=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=he6710b0_1
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - opt_einsum=3.1.0=py_0
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.9.2=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37he6710b0_1
  - py-xgboost-cpu=0.90=py37_1
  - pyasn1=0.4.8=py_0
  - pycparser=2.19=py_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.3.0=py3.7_cpu_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.15.0+db2=pyhb230dea_0
  - tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
  - tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
  - tensorflow-estimator=1.15.1+db2=pyh2649769_0
  - tensorflow-mkl=1.15.0+db2=h4fcabd2_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.4.1=py37_cpu
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.1
    - deprecated==1.2.7
    - docker==4.1.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.18.2
    - hyperopt==0.2.1.db1
    - keras==2.2.5
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.4.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml

Python en clústeres de GPU

name: databricks-ml-gpu
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=1.0=gpu_0
  - _tflow_select=2.1.0=gpu
  - absl-py=0.8.1=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cudatoolkit=10.0.130=0
  - cudnn=7.6.4=cuda10.0_0
  - cupti=10.0.130=0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.2.2=py37_0
  - gitdb2=2.0.6=py_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.8=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - keras-applications=1.0.8=py_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.9.2=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=h688424c_0
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - opt_einsum=3.1.0=py_0
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.9.2=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37h688424c_0
  - py-xgboost-gpu=0.90=py37h28bbb66_0
  - pyasn1=0.4.8=py_0
  - pycparser=2.19=py_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.3.0=py3.7_cuda10.0.130_cudnn7.6.3_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.15.0+db2=pyhb230dea_0
  - tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
  - tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
  - tensorflow-estimator=1.15.1+db2=pyh2649769_0
  - tensorflow-gpu=1.15.0+db2=h0d30ee6_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.4.1=py37_cu100
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.1
    - deprecated==1.2.7
    - docker==4.1.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.18.2
    - hyperopt==0.2.1.db1
    - keras==2.2.5
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.4.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu

Paquetes de Spark que contienen módulos de Python

Paquete de Spark Módulo de Python Versión
graphframes graphframes 0.7.0-db1-spark2.4
spark-deep-learning sparkdl 1.5.0-db12-spark2.4
tensorframes tensorframes 0.8.2-s_2.11

Bibliotecas de R

Las bibliotecas de R son idénticas a las bibliotecas de R de Databricks Runtime 6.2.

Bibliotecas de Java y Scala (clúster de Scala 2.11)

Además de las bibliotecas de Java y Scala de Databricks Runtime 6.2, Databricks Runtime 6.2 ML contiene los siguientes archivos JAR:

Identificador de grupo Identificador de artefacto Versión
com.databricks spark-deep-learning 1.5.0-db12-spark2.4
com.typesafe.akka akka-actor_2.11 2.3.11
ml.combust.mleap mleap-databricks-runtime_2.11 0.15.0
ml.dmlc xgboost4j 0.90
ml.dmlc xgboost4j-spark 0.90
org.graphframes graphframes_2.11 0.7.0-db1-spark2.4
org.mlflow mlflow-client 1.4.0
org.tensorflow libtensorflow 1.15.0
org.tensorflow libtensorflow_jni 1.15.0
org.tensorflow spark-tensorflow-connector_2.11 1.15.0
org.tensorflow tensorflow 1.15.0
org.tensorframes tensorframes 0.8.2-s_2.11