Compartir vía


Databricks Runtime 10.1 para ML (EoS)

Nota:

El soporte técnico con esta versión de Databricks Runtime ha finalizado. Para obtener la fecha de finalización del soporte técnico, consulte Historial de finalización del soporte técnico. Para ver todas las versiones de Databricks Runtime con soporte técnico, consulte las notas de la versión de Databricks Runtime versiones y compatibilidad.

Databricks Runtime 10.1 para Machine Learning proporciona un entorno listo para usar de aprendizaje automático y ciencia de datos basado en Databricks Runtime 10.1 (EoS). Databricks Runtime ML contiene muchas bibliotecas populares de aprendizaje automático, incluidas TensorFlow, PyTorch y XGBoost. También admite entrenamiento de aprendizaje profundo distribuido mediante Horovod.

Para más información, incluidas las instrucciones para crear un clúster de Databricks Runtime ML, consulte IA y aprendizaje automático en Databricks.

Nuevas características y mejoras

Databricks Runtime 10.1 ML se basa en Databricks Runtime 10.1. Para más información sobre las novedades de Databricks Runtime 10.1, entre las que se incluyen Apache Spark MLlib y SparkR, consulte las notas de la versión de Databricks Runtime 10.1 (EoS).

Mejoras en AutoML

En Databricks Runtime 10.1, AutoML incluye una detección de tipos semántica mejorada, nuevas alertas para posibles problemas de datos durante el entrenamiento, nuevas funcionalidades para evitar el sobreajuste de los modelos y la capacidad de dividir el conjunto de datos de entrada en conjuntos de entrenamiento, validación y pruebas cronológicamente.

Detecciones de tipos semánticos adicionales

Ahora, AutoML admite la detección de tipos semánticos adicionales:

  • Las columnas numéricas que contienen etiquetas de categorías se tratan como un tipo de categoría.
  • Las columnas de cadena que contienen texto en inglés se tratan como una característica de texto.

Ahora también se pueden agregar anotaciones para especificar un tipo de datos de columna. Para obtener más información, consulte Detección de tipos semánticos.

Alertas durante el entrenamiento para posibles problemas de datos

Ahora, AutoML detecta y genera alertas para posibles problemas con el conjunto de datos. Las alertas de ejemplo incluyen tipos de columna no admitidos y columnas de cardinalidad alta. Estas alertas aparecen en la página del experimento en la nueva pestaña Alertas. En el cuaderno de exploración de datos se incluye información adicional sobre las alertas. Para obtener más información, consulte Ejecutar el experimento y supervisar los resultados.

Reducción del sobreajuste del modelo

Dos nuevas funcionalidades reducen las posibilidades de sobreajustar un modelo al usar AutoML:

  • Ahora, AutoML notifica las métricas de pruebas además de las métricas de validación y entrenamiento.
  • AutoML usa la detención anticipada. Detiene los modelos de entrenamiento y ajuste si la métrica de validación ya no mejora.

Divide el conjunto de datos en conjuntos de entrenamiento, validación y prueba cronológicamente.

Para los problemas de clasificación y regresión, puede dividir el conjunto de datos en conjuntos de entrenamiento, validación y prueba cronológicamente. Consulte Dividir datos en conjuntos de entrenamiento, validación y pruebas para obtener más información.

Mejoras en el Almacén de características de Databricks

El Almacén de características de Databricks admite tipos de datos adicionales para las tablas de características: BinaryType, DecimalType y MapType.

MLflow

Las siguientes mejoras están disponibles a partir de la versión 1.21.0 de Mlflow, que se incluye en Databricks Runtime 10.1 ML.

  • [Modelos] Actualización del tipo de modelo fastai para admitir fastai v2 (2.4.1 y versiones posteriores).
  • [Modelos] Presentación de un tipo de modelo mlflow.prophet para los modelos de series temporales de Prophet.
  • [Puntuación] Corrección de un error de cumplimiento del esquema que convierte incorrectamente cadenas de fecha en objetos datetime.

Hyperopt

SparkTrials ahora admite el parámetro early_stopping_fn para fmin. Puede usar la función de detención anticipada para especificar las condiciones en las que Hyperopt debe detener el ajuste de hiperparámetros antes de alcanzar el número máximo de evaluaciones. Por ejemplo, se puede usar este parámetro para finalizar el ajuste si la función objective ya no disminuye. Para más información, consulte fmin().

Cambios importantes en el entorno de Python de Databricks Runtime ML

Paquetes de Python actualizados

  • automl 1.3.1 => 1.4.1
  • feature_store 0.3.4 => 0.3.5
  • holidays 0.11.2 => 0.11.3.1
  • horovod 0.22.1 => 0.23.0
  • hyperopt 0.2.5.db2 => 0.2.5.db4
  • imbalanced-learn 0.8.0 => 0.8.1
  • lightgbm 3.1.1 => 3.3.0
  • mlflow 1.20.2 => 1.21.0
  • petastorm 0.11.2 => 0.11.3
  • plotly 5.1.0 => 5.3.0
  • pytorch 1.9.0 => 1.9.1
  • spacy 3.1.2 => 3.1.3
  • sparkdl 2.2.0_db3 => 2.2.0_db4
  • torchvision 0.10.0 => 0.10.1
  • transformers=4.9.2 => 4.11.3

Paquetes de Python agregados

  • fasttext => 0.9.2
  • tensorboard-plugin-profile => 2.5.0

En desuso

El seguimiento automatizado de MLflow de MLlib está en desuso en clústeres que ejecutan Databricks Runtime 10.1 ML y versiones posteriores. En su lugar, use el registro automático de MLflow PySpark ML mediante una llamada a mlflow.pyspark.ml.autolog(). El registro automático está habilitado de manera predeterminada con el registro automático de Databricks.

Entorno del sistema

El entorno del sistema de Databricks Runtime 10.1 ML se diferencia del de Databricks Runtime 10.1 en lo siguiente:

Bibliotecas

En las secciones siguientes se enumeran las bibliotecas incluidas en Databricks Runtime 10.1 ML, que difieren de las incluidas en Databricks Runtime 10.1.

En esta sección:

Bibliotecas de nivel superior

Databricks Runtime 10.1 ML incluye las siguientes bibliotecas de nivel superior:

Bibliotecas de Python

Databricks Runtime 10.1 ML usa Virtualenv para la administración de paquetes de Python e incluye muchos paquetes de ML populares.

Además de los paquetes especificados en las secciones siguientes, Databricks Runtime 10.1 ML también incluye los siguientes:

  • hyperopt 0.2.5.db4
  • sparkdl 2.2.0-db4
  • feature_store 0.3.5
  • automl 1.4.0

Nota:

Databricks Runtime 10.1 ML incluye la versión 0.24 de scikit-learn en lugar de la versión 1.0 debido a problemas de incompatibilidad. El paquete scikit-learn interactúa con muchos otros paquetes de Databricks Runtime 10.1 ML.

Puede actualizar a la versión 1.0 de scikit-learn; sin embargo, Databricks no admite esta versión.

Para actualizar, use bibliotecas de ámbito de cuaderno. Desde un cuaderno, ejecute %pip install --upgrade "scikit-learn>=1.0,<1.1".

Una alternativa es usar este script de inicialización de clúster:

#!/bin/bash

set -e

pip install --upgrade "scikit-learn>=1.0,<1.1"

Bibliotecas de Python en clústeres de CPU

Biblioteca Versión Biblioteca Versión Biblioteca Versión
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bleach 3.3.0 blis 0.7.4
boto3 1.16.7 botocore 1.19.7 cachetools 4.2.4
catalogue 2.0.6 certifi 2020.12.5 cffi 1.14.5
chardet 4.0.0 clang 5.0 click 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 criptografía 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.3
databricks-cli 0.14.3 dbus-python 1.2.16 decorator 5.0.6
defusedxml 0.7.1 dill 0.3.2 diskcache 5.2.1
distlib 0.3.3 distro-info 0.23ubuntu1 entrypoints 0,3
ephem 4,1 facets-overview 1.0.0 fasttext 0.9.2
filelock 3.0.12 Flask 1.1.2 flatbuffers 1.12
fsspec 0.9.0 future 0.18.2 gast 0.4.0
gitdb 4.0.7 GitPython 3.1.12 google-auth 1.22.1
google-auth-oauthlib 0.4.2 google-pasta 0.2.0 grpcio 1.39.0
gunicorn 20.0.4 gviz-api 1.10.0 h5py 3.1.0
hijri-converter 2.2.2 holidays 0.11.3.1 horovod 0.23.0
htmlmin 0.1.12 huggingface-hub 0.0.19 idna 2.10
ImageHash 4.2.1 imbalanced-learn 0.8.1 importlib-metadata 3.10.0
ipykernel 5.3.4 ipython 7.22.0 ipython-genutils 0.2.0
ipywidgets 7.6.3 isodate 0.6.0 itsdangerous 1.1.0
jedi 0.17.2 Jinja2 2.11.3 jmespath 0.10.0
joblib 1.0.1 joblibspark 0.3.0 jsonschema 3.2.0
jupyter-client 6.1.12 jupyter-core 4.7.1 jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.0.0 keras 2.6.0 keras-preprocessing 1.1.2
kiwisolver 1.3.1 koalas 1.8.2 korean-lunar-calendar 0.2.1
lightgbm 3.3.0 llvmlite 0.37.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.21.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 notebook 6.3.0 numba 0.54.1
numpy 1.19.2 oauthlib 3.1.0 opt-einsum 3.3.0
empaquetado 20.9 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.3.0
preshed 3.0.5 prometheus-client 0.10.1 prompt-toolkit 3.0.17
prophet 1.0.1 protobuf 3.17.2 psutil 5.8.0
psycopg2 2.8.5 ptyprocess 0.7.0 pyarrow 4.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.8.0
pycparser 2,20 pydantic 1.8.2 Pygments 2.8.1
PyGObject 3.36.0 PyMeeus 0.5.11 PyNaCl 1.4.0
pyodbc 4.0.30 pyparsing 2.4.7 pyrsistent 0.17.3
pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.6 Python-dateutil 2.8.1
python-editor 1.0.4 pytz 2020.5 PyWavelets 1.1.1
PyYAML 5.4.1 pyzmq 20.0.0 regex 2021.4.4
Solicitudes 2.25.1 requests-oauthlib 1.3.0 requests-unixsocket 0.2.0
rsa 4.7.2 s3transfer 0.3.7 sacremoses 0.0.46
scikit-learn 0.24.1 scipy 1.6.2 seaborn 0.11.1
Send2Trash 1.5.0 setuptools 52.0.0 setuptools-git 1.2
shap 0.39.0 simplejson 3.17.2 six (seis) 1.15.0
segmentación 0.0.7 smart-open 5.2.0 smmap 3.0.5
spacy 3.1.3 spacy-legacy 3.0.8 spark-tensorflow-distributor 1.0.0
sqlparse 0.4.1 srsly 2.4.1 ssh-import-id 5.10
statsmodels 0.12.2 tabulate 0.8.7 tangled-up-in-unicode 0.1.0
tenacity 6.2.0 tensorboard 2.6.0 tensorboard-data-server 0.6.1
tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.0 tensorflow-cpu 2.6.0
tensorflow-estimator 2.6.0 termcolor 1.1.0 terminado 0.9.4
testpath 0.4.4 thinc 8.0.9 threadpoolctl 2.1.0
tokenizers 0.10.3 torch 1.9.1+cpu torchvision 0.10.1+cpu
tornado 6.1 tqdm 4.59.0 traitlets 5.0.5
transformers 4.11.3 typer 0.3.2 typing-extensions 3.7.4.3
ujson 4.0.2 unattended-upgrades 0,1 urllib3 1.25.11
virtualenv 20.4.1 visions 0.7.4 wasabi 0.8.2
wcwidth 0.2.5 webencodings 0.5.1 websocket-client 0.57.0
Werkzeug 1.0.1 wheel 0.36.2 widgetsnbextension 3.5.1
wrapt 1.12.1 xgboost 1.4.2 zipp 3.4.1

Bibliotecas de Python en clústeres de GPU

Biblioteca Versión Biblioteca Versión Biblioteca Versión
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bleach 3.3.0 blis 0.7.4
boto3 1.16.7 botocore 1.19.7 cachetools 4.2.4
catalogue 2.0.6 certifi 2020.12.5 cffi 1.14.5
chardet 4.0.0 clang 5.0 click 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 criptografía 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.3
databricks-cli 0.14.3 dbus-python 1.2.16 decorator 5.0.6
defusedxml 0.7.1 dill 0.3.2 diskcache 5.2.1
distlib 0.3.3 distro-info 0.23ubuntu1 entrypoints 0,3
ephem 4,1 facets-overview 1.0.0 fasttext 0.9.2
filelock 3.0.12 Flask 1.1.2 flatbuffers 1.12
fsspec 0.9.0 future 0.18.2 gast 0.4.0
gitdb 4.0.7 GitPython 3.1.12 google-auth 1.22.1
google-auth-oauthlib 0.4.2 google-pasta 0.2.0 grpcio 1.39.0
gunicorn 20.0.4 gviz-api 1.10.0 h5py 3.1.0
hijri-converter 2.2.2 holidays 0.11.3.1 horovod 0.23.0
htmlmin 0.1.12 huggingface-hub 0.0.19 idna 2.10
ImageHash 4.2.1 imbalanced-learn 0.8.1 importlib-metadata 3.10.0
ipykernel 5.3.4 ipython 7.22.0 ipython-genutils 0.2.0
ipywidgets 7.6.3 isodate 0.6.0 itsdangerous 1.1.0
jedi 0.17.2 Jinja2 2.11.3 jmespath 0.10.0
joblib 1.0.1 joblibspark 0.3.0 jsonschema 3.2.0
jupyter-client 6.1.12 jupyter-core 4.7.1 jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.0.0 keras 2.6.0 keras-preprocessing 1.1.2
kiwisolver 1.3.1 koalas 1.8.2 korean-lunar-calendar 0.2.1
lightgbm 3.3.0 llvmlite 0.37.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.21.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 notebook 6.3.0 numba 0.54.1
numpy 1.19.2 oauthlib 3.1.0 opt-einsum 3.3.0
empaquetado 20.9 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.3.0
preshed 3.0.5 prompt-toolkit 3.0.17 prophet 1.0.1
protobuf 3.17.2 psutil 5.8.0 psycopg2 2.8.5
ptyprocess 0.7.0 pyarrow 4.0.0 pyasn1 0.4.8
pyasn1-modules 0.2.8 pybind11 2.8.1 pycparser 2,20
pydantic 1.8.2 Pygments 2.8.1 PyGObject 3.36.0
PyMeeus 0.5.11 PyNaCl 1.4.0 pyodbc 4.0.30
pyparsing 2.4.7 pyrsistent 0.17.3 pystan 2.19.1.1
python-apt 2.0.0+ubuntu0.20.4.6 Python-dateutil 2.8.1 python-editor 1.0.4
pytz 2020.5 PyWavelets 1.1.1 PyYAML 5.4.1
pyzmq 20.0.0 regex 2021.4.4 Solicitudes 2.25.1
requests-oauthlib 1.3.0 requests-unixsocket 0.2.0 rsa 4.7.2
s3transfer 0.3.7 sacremoses 0.0.46 scikit-learn 0.24.1
scipy 1.6.2 seaborn 0.11.1 Send2Trash 1.5.0
setuptools 52.0.0 setuptools-git 1.2 shap 0.39.0
simplejson 3.17.2 six (seis) 1.15.0 segmentación 0.0.7
smart-open 5.2.0 smmap 3.0.5 spacy 3.1.3
spacy-legacy 3.0.8 spark-tensorflow-distributor 1.0.0 sqlparse 0.4.1
srsly 2.4.1 ssh-import-id 5.10 statsmodels 0.12.2
tabulate 0.8.7 tangled-up-in-unicode 0.1.0 tenacity 6.2.0
tensorboard 2.6.0 tensorboard-data-server 0.6.1 tensorboard-plugin-profile 2.5.0
tensorboard-plugin-wit 1.8.0 tensorflow 2.6.0 tensorflow-estimator 2.6.0
termcolor 1.1.0 terminado 0.9.4 testpath 0.4.4
thinc 8.0.9 threadpoolctl 2.1.0 tokenizers 0.10.3
torch 1.9.1+cu111 torchvision 0.10.1+cu111 tornado 6.1
tqdm 4.59.0 traitlets 5.0.5 transformers 4.11.3
typer 0.3.2 typing-extensions 3.7.4.3 ujson 4.0.2
unattended-upgrades 0,1 urllib3 1.25.11 virtualenv 20.4.1
visions 0.7.4 wasabi 0.8.2 wcwidth 0.2.5
webencodings 0.5.1 websocket-client 0.57.0 Werkzeug 1.0.1
wheel 0.36.2 widgetsnbextension 3.5.1 wrapt 1.12.1
xgboost 1.4.2 zipp 3.4.1

Paquetes de Spark que contienen módulos de Python

Paquete de Spark Módulo de Python Versión
graphframes graphframes 0.8.2-db1-spark3.2

Bibliotecas de R

Las bibliotecas de R son idénticas a las bibliotecas de R de Databricks Runtime 10.1.

Bibliotecas de Java y Scala (clúster de Scala 2.12)

Además de las bibliotecas de Java y Scala de Databricks Runtime 10.1, Databricks Runtime 10.1 ML contiene los siguientes archivos JAR:

Clústeres de CPU

Identificador de grupo Identificador de artefacto Versión
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.0-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.4.1
ml.dmlc xgboost4j_2.12 1.4.1
org.graphframes graphframes_2.12 0.8.1-db6-spark3.2
org.mlflow mlflow-client 1.20.2
org.mlflow mlflow-spark 1.20.2
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Clústeres de GPU

Identificador de grupo Identificador de artefacto Versión
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-gpu_2.12 1.4.1
ml.dmlc xgboost4j-spark-gpu_2.12 1.4.1-spark3.2
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.21.0
org.mlflow mlflow-spark 1.21.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0