Compartir vía


Inicio rápido: Detección de información de identificación personal (PII)

Nota:

En este inicio rápido solo se trata la detección de PII en documentos. Para más información sobre cómo detectar PII en conversaciones, consulte Detección y redacción de PII en conversaciones.

Documentación de referencia | Más ejemplos | Paquete (NuGet) | Código fuente de biblioteca

Use este inicio rápido para crear una aplicación de detección de información de identificación personal (PII) con la biblioteca cliente de .NET. En el siguiente ejemplo, creará una aplicación de C# que puede identificar información confidencial reconocida en el texto.

Sugerencia

Puede usar Azure AI Foundry para intentar realizar un resumen sin necesidad de escribir código.

Requisitos previos

Instalación

Creación de variables de entorno

La aplicación debe autenticarse para enviar solicitudes de API. En el caso de producción, use una forma segura de almacenar sus credenciales y acceder a ellas. En este ejemplo, escribirá las credenciales en variables de entorno del equipo local que ejecuta la aplicación.

Para establecer la variable de entorno para la clave del recurso de lenguaje, abra una ventana de consola y siga las instrucciones correspondientes a su sistema operativo y su entorno de desarrollo.

  • Para establecer la variable de entorno LANGUAGE_KEY, reemplace your-key por una de las claves del recurso.
  • Para establecer la variable de entorno LANGUAGE_ENDPOINT, reemplace your-endpoint por el punto de conexión del recurso.

Importante

Si usa una clave de API, almacénela de forma segura en otro lugar, como en Azure Key Vault. No incluya la clave de API directamente en el código ni la exponga nunca públicamente.

Para más información acerca de la seguridad de los servicios de AI, consulte Autenticación de solicitudes a los servicios de Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Nota:

Si solo necesita acceder a las variables de entorno en la consola que se está ejecutando en este momento, puede establecer la variable de entorno con set en vez de con setx.

Una vez agregadas las variables de entorno, es posible que tenga que reiniciar todos los programas en ejecución que necesiten leer las variables de entorno, incluida la ventana de la consola. Por ejemplo, si usa Visual Studio como editor, reinícielo antes de ejecutar el ejemplo.

Creación de una aplicación de .NET Core

Utilice el IDE de Visual Studio para crear una aplicación de consola de .NET Core. Así se crea un proyecto "Hola mundo" con un solo archivo de origen de C#: program.cs.

Instale la biblioteca cliente, para lo que debe hacer clic con el botón derecho en la solución en el Explorador de soluciones y seleccionar Administrar paquetes NuGet. En el administrador de paquetes que se abre, seleccione Examinar y busque Azure.AI.TextAnalytics. Seleccione la versión 5.2.0 e Instalar. También puede usar la Consola del Administrador de paquetes.

Ejemplo de código

Copie el código siguiente en el archivo program.cs y ejecute el código.

using Azure;
using System;
using Azure.AI.TextAnalytics;

namespace Example
{
    class Program
    {
        // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
        static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
        static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");

        private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
        private static readonly Uri endpoint = new Uri(languageEndpoint);

        // Example method for detecting sensitive information (PII) from text 
        static void RecognizePIIExample(TextAnalyticsClient client)
        {
            string document = "Call our office at 312-555-1234, or send an email to support@contoso.com.";
        
            PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;
        
            Console.WriteLine($"Redacted Text: {entities.RedactedText}");
            if (entities.Count > 0)
            {
                Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
                foreach (PiiEntity entity in entities)
                {
                    Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory: {entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");
                }
            }
            else
            {
                Console.WriteLine("No entities were found.");
            }
        }

        static void Main(string[] args)
        {
            var client = new TextAnalyticsClient(endpoint, credentials);
            RecognizePIIExample(client);

            Console.Write("Press any key to exit.");
            Console.ReadKey();
        }

    }
}

Output

Redacted Text: Call our office at ************, or send an email to *******************.
Recognized 2 PII entities:
Text: 312-555-1234, Category: PhoneNumber, SubCategory: , Confidence score: 0.8
Text: support@contoso.com, Category: Email, SubCategory: , Confidence score: 0.8

Documentación de referencia | Más ejemplos | Paquete (Maven) | Código fuente de biblioteca

Use este inicio rápido para crear una aplicación de detección de información de identificación personal (PII) con la biblioteca cliente de Java. En el siguiente ejemplo, creará una aplicación de Java que puede identificar información confidencial reconocida en el texto.

Sugerencia

Puede usar Azure AI Foundry para intentar realizar un resumen sin necesidad de escribir código.

Requisitos previos

Instalación

Creación de variables de entorno

La aplicación debe autenticarse para enviar solicitudes de API. En el caso de producción, use una forma segura de almacenar sus credenciales y acceder a ellas. En este ejemplo, escribirá las credenciales en variables de entorno del equipo local que ejecuta la aplicación.

Para establecer la variable de entorno para la clave del recurso de lenguaje, abra una ventana de consola y siga las instrucciones correspondientes a su sistema operativo y su entorno de desarrollo.

  • Para establecer la variable de entorno LANGUAGE_KEY, reemplace your-key por una de las claves del recurso.
  • Para establecer la variable de entorno LANGUAGE_ENDPOINT, reemplace your-endpoint por el punto de conexión del recurso.

Importante

Si usa una clave de API, almacénela de forma segura en otro lugar, como en Azure Key Vault. No incluya la clave de API directamente en el código ni la exponga nunca públicamente.

Para más información acerca de la seguridad de los servicios de AI, consulte Autenticación de solicitudes a los servicios de Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Nota:

Si solo necesita acceder a las variables de entorno en la consola que se está ejecutando en este momento, puede establecer la variable de entorno con set en vez de con setx.

Una vez agregadas las variables de entorno, es posible que tenga que reiniciar todos los programas en ejecución que necesiten leer las variables de entorno, incluida la ventana de la consola. Por ejemplo, si usa Visual Studio como editor, reinícielo antes de ejecutar el ejemplo.

Incorporación de la biblioteca cliente

Cree un proyecto de Maven en el entorno de desarrollo o IDE que prefiera. Luego, agregue la siguiente dependencia al archivo pom.xml del proyecto. La sintaxis de implementación de otras herramientas de compilación se puede encontrar en línea.

<dependencies>
     <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.2.0</version>
    </dependency>
</dependencies>

Ejemplo de código

Cree un archivo de Java llamado Example.java. Abra el archivo y copie el código siguiente. Luego, ejecute el código.

import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

public class Example {

    // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
    private static String languageKey = System.getenv("LANGUAGE_KEY");
    private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");

    public static void main(String[] args) {
        TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
        recognizePiiEntitiesExample(client);
    }
    // Method to authenticate the client object with your key and endpoint
    static TextAnalyticsClient authenticateClient(String key, String endpoint) {
        return new TextAnalyticsClientBuilder()
                .credential(new AzureKeyCredential(key))
                .endpoint(endpoint)
                .buildClient();
    }

    // Example method for detecting sensitive information (PII) from text 
    static void recognizePiiEntitiesExample(TextAnalyticsClient client)
    {
        // The text that need be analyzed.
        String document = "My SSN is 859-98-0987";
        PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
        System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
        piiEntityCollection.forEach(entity -> System.out.printf(
            "Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory: %s,"
                + " confidence score: %f.%n",
            entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
    }
}

Output

Redacted Text: My SSN is ***********
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: USSocialSecurityNumber, entity subcategory: null, confidence score: 0.650000.

Documentación de referencia | Más ejemplos | Paquete (npm) | Código fuente de biblioteca

Use este inicio rápido para crear una aplicación de detección de información de identificación personal (PII) con la biblioteca cliente de Node.js. En el siguiente ejemplo, creará una aplicación de JavaScript que puede identificar información confidencial reconocida en el texto.

Requisitos previos

Instalación

Creación de variables de entorno

La aplicación debe autenticarse para enviar solicitudes de API. En el caso de producción, use una forma segura de almacenar sus credenciales y acceder a ellas. En este ejemplo, escribirá las credenciales en variables de entorno del equipo local que ejecuta la aplicación.

Para establecer la variable de entorno para la clave del recurso de lenguaje, abra una ventana de consola y siga las instrucciones correspondientes a su sistema operativo y su entorno de desarrollo.

  • Para establecer la variable de entorno LANGUAGE_KEY, reemplace your-key por una de las claves del recurso.
  • Para establecer la variable de entorno LANGUAGE_ENDPOINT, reemplace your-endpoint por el punto de conexión del recurso.

Importante

Si usa una clave de API, almacénela de forma segura en otro lugar, como en Azure Key Vault. No incluya la clave de API directamente en el código ni la exponga nunca públicamente.

Para más información acerca de la seguridad de los servicios de AI, consulte Autenticación de solicitudes a los servicios de Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Nota:

Si solo necesita acceder a las variables de entorno en la consola que se está ejecutando en este momento, puede establecer la variable de entorno con set en vez de con setx.

Una vez agregadas las variables de entorno, es posible que tenga que reiniciar todos los programas en ejecución que necesiten leer las variables de entorno, incluida la ventana de la consola. Por ejemplo, si usa Visual Studio como editor, reinícielo antes de ejecutar el ejemplo.

Creación de una aplicación Node.js

En una ventana de la consola (como cmd, PowerShell o Bash), cree un directorio para la aplicación y vaya a él.

mkdir myapp 

cd myapp

Ejecute el comando npm init para crear una aplicación de nodo con un archivo package.json.

npm init

Instalación de la biblioteca cliente

Instale el paquete npm:

npm install @azure/ai-text-analytics

Ejemplo de código

Abra el archivo y copie el código siguiente. Luego, ejecute el código.

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");

// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;

//an example document for pii recognition
const documents = [ "The employee's phone number is (555) 555-5555." ];

async function main() {
    console.log(`PII recognition sample`);
  
    const client = new TextAnalyticsClient(endpoint, new AzureKeyCredential(key));
  
    const documents = ["My phone number is 555-555-5555"];
  
    const [result] = await client.analyze("PiiEntityRecognition", documents, "en");
  
    if (!result.error) {
      console.log(`Redacted text: "${result.redactedText}"`);
      console.log("Pii Entities: ");
      for (const entity of result.entities) {
        console.log(`\t- "${entity.text}" of type ${entity.category}`);
      }
    }
}

main().catch((err) => {
console.error("The sample encountered an error:", err);
});

Output

PII recognition sample
Redacted text: "My phone number is ************"
Pii Entities:
        - "555-555-5555" of type PhoneNumber

Documentación de referencia | Más ejemplos | Paquete (PyPi) | Código fuente de biblioteca

Use este inicio rápido para crear una aplicación de detección de información de identificación personal (PII) con la biblioteca cliente de Python. En el ejemplo siguiente, creará una aplicación de Python que puede identificar información confidencial reconocida en el texto.

Requisitos previos

Instalación

Creación de variables de entorno

La aplicación debe autenticarse para enviar solicitudes de API. En el caso de producción, use una forma segura de almacenar sus credenciales y acceder a ellas. En este ejemplo, escribirá las credenciales en variables de entorno del equipo local que ejecuta la aplicación.

Para establecer la variable de entorno para la clave del recurso de lenguaje, abra una ventana de consola y siga las instrucciones correspondientes a su sistema operativo y su entorno de desarrollo.

  • Para establecer la variable de entorno LANGUAGE_KEY, reemplace your-key por una de las claves del recurso.
  • Para establecer la variable de entorno LANGUAGE_ENDPOINT, reemplace your-endpoint por el punto de conexión del recurso.

Importante

Si usa una clave de API, almacénela de forma segura en otro lugar, como en Azure Key Vault. No incluya la clave de API directamente en el código ni la exponga nunca públicamente.

Para más información acerca de la seguridad de los servicios de AI, consulte Autenticación de solicitudes a los servicios de Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Nota:

Si solo necesita acceder a las variables de entorno en la consola que se está ejecutando en este momento, puede establecer la variable de entorno con set en vez de con setx.

Una vez agregadas las variables de entorno, es posible que tenga que reiniciar todos los programas en ejecución que necesiten leer las variables de entorno, incluida la ventana de la consola. Por ejemplo, si usa Visual Studio como editor, reinícielo antes de ejecutar el ejemplo.

Instalación de la biblioteca cliente

Después de instalar Python, puede instalar la biblioteca cliente con:

pip install azure-ai-textanalytics==5.2.0

Ejemplo de código

Cree un nuevo archivo de Python y copie el código siguiente. Luego, ejecute el código.

# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

# Authenticate the client using your key and endpoint 
def authenticate_client():
    ta_credential = AzureKeyCredential(language_key)
    text_analytics_client = TextAnalyticsClient(
            endpoint=language_endpoint, 
            credential=ta_credential)
    return text_analytics_client

client = authenticate_client()

# Example method for detecting sensitive information (PII) from text 
def pii_recognition_example(client):
    documents = [
        "The employee's SSN is 859-98-0987.",
        "The employee's phone number is 555-555-5555."
    ]
    response = client.recognize_pii_entities(documents, language="en")
    result = [doc for doc in response if not doc.is_error]
    for doc in result:
        print("Redacted Text: {}".format(doc.redacted_text))
        for entity in doc.entities:
            print("Entity: {}".format(entity.text))
            print("\tCategory: {}".format(entity.category))
            print("\tConfidence Score: {}".format(entity.confidence_score))
            print("\tOffset: {}".format(entity.offset))
            print("\tLength: {}".format(entity.length))
pii_recognition_example(client)

Output

Redacted Text: The ********'s SSN is ***********.
Entity: employee
        Category: PersonType
        Confidence Score: 0.97
        Offset: 4
        Length: 8
Entity: 859-98-0987
        Category: USSocialSecurityNumber
        Confidence Score: 0.65
        Offset: 22
        Length: 11
Redacted Text: The ********'s phone number is ************.
Entity: employee
        Category: PersonType
        Confidence Score: 0.96
        Offset: 4
        Length: 8
Entity: 555-555-5555
        Category: PhoneNumber
        Confidence Score: 0.8
        Offset: 31
        Length: 12

Documentación de referencia

Use este inicio rápido para enviar solicitudes de detección de información de identificación personal (PII) mediante la API REST. En el ejemplo siguiente, usará cURL para identificar información confidencial reconocida en el texto.

Requisitos previos

Instalación

Creación de variables de entorno

La aplicación debe autenticarse para enviar solicitudes de API. En el caso de producción, use una forma segura de almacenar sus credenciales y acceder a ellas. En este ejemplo, escribirá las credenciales en variables de entorno del equipo local que ejecuta la aplicación.

Para establecer la variable de entorno para la clave del recurso de lenguaje, abra una ventana de consola y siga las instrucciones correspondientes a su sistema operativo y su entorno de desarrollo.

  • Para establecer la variable de entorno LANGUAGE_KEY, reemplace your-key por una de las claves del recurso.
  • Para establecer la variable de entorno LANGUAGE_ENDPOINT, reemplace your-endpoint por el punto de conexión del recurso.

Importante

Si usa una clave de API, almacénela de forma segura en otro lugar, como en Azure Key Vault. No incluya la clave de API directamente en el código ni la exponga nunca públicamente.

Para más información acerca de la seguridad de los servicios de AI, consulte Autenticación de solicitudes a los servicios de Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Nota:

Si solo necesita acceder a las variables de entorno en la consola que se está ejecutando en este momento, puede establecer la variable de entorno con set en vez de con setx.

Una vez agregadas las variables de entorno, es posible que tenga que reiniciar todos los programas en ejecución que necesiten leer las variables de entorno, incluida la ventana de la consola. Por ejemplo, si usa Visual Studio como editor, reinícielo antes de ejecutar el ejemplo.

Creación de un archivo JSON con el cuerpo de la solicitud de ejemplo

En un editor de código, cree un archivo denominado test_pii_payload.json y copie el JSON de ejemplo siguiente. Esta solicitud de ejemplo se enviará a la API en el paso siguiente.

{
    "kind": "PiiEntityRecognition",
    "parameters": {
        "modelVersion": "latest"
    },
    "analysisInput":{
        "documents":[
            {
                "id":"1",
                "language": "en",
                "text": "Call our office at 312-555-1234, or send an email to support@contoso.com"
            }
        ]
    }
}
'

Guarde test_pii_payload.json en algún lugar del equipo. Por ejemplo, el escritorio.

Envío de una solicitud de API de detección de información de identificación personal (PII)

Use los comandos siguientes para enviar la solicitud de API mediante el programa que usa. Copie el comando en el terminal y ejecútelo.

parámetro Descripción
-X POST <endpoint> Especifica el punto de conexión para acceder a la API.
-H Content-Type: application/json Tipo de contenido para enviar datos JSON.
-H "Ocp-Apim-Subscription-Key:<key> Especifica la clave para acceder a la API.
-d <documents> JSON que contiene los documentos que desea enviar.

Sustituya C:\Users\<myaccount>\Desktop\test_pii_payload.json por la ubicación del archivo de solicitud JSON de ejemplo que ha creado en el paso anterior.

Símbolo del sistema

curl -X POST "%LANGUAGE_ENDPOINT%/language/:analyze-text?api-version=2022-05-01" ^
-H "Content-Type: application/json" ^
-H "Ocp-Apim-Subscription-Key: %LANGUAGE_KEY%" ^
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"

PowerShell

curl.exe -X POST $env:LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 `
-H "Content-Type: application/json" `
-H "Ocp-Apim-Subscription-Key: $env:LANGUAGE_KEY" `
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"

Respuesta JSON

{
	"kind": "PiiEntityRecognitionResults",
	"results": {
		"documents": [{
			"redactedText": "Call our office at ************, or send an email to *******************",
			"id": "1",
			"entities": [{
				"text": "312-555-1234",
				"category": "PhoneNumber",
				"offset": 19,
				"length": 12,
				"confidenceScore": 0.8
			}, {
				"text": "support@contoso.com",
				"category": "Email",
				"offset": 53,
				"length": 19,
				"confidenceScore": 0.8
			}],
			"warnings": []
		}],
		"errors": [],
		"modelVersion": "2021-01-15"
	}
}

Limpieza de recursos

Si quiere limpiar y eliminar una suscripción de servicios de Azure AI, puede eliminar el recurso o el grupo de recursos. Al eliminar el grupo de recursos, también se elimina cualquier otro recurso que esté asociado a él.

Pasos siguientes