Compartir vía


Composición de modelos personalizados

estilo de énfasis

Este contenido se aplica a: marca de verificación v4.0 (GA) | Versiones anteriores: marca de verificación azul v3.1 (GA) marca de verificación azul v3.0 (GA) marca de verificación azul v2.1 (GA)

Este contenido se aplica a: marca de verificación v3.1 (GA) | Última versión: marca de verificación púrpura v4.0 (GA) | Versiones anteriores: marca de verificación azul v3.0 marca de verificación azul v2.1

Este contenido se aplica a: marca de verificación v3.0 (GA) | Últimas versiones: marca de verificación púrpura v4.0 (GA) marca de verificación púrpura v3.1 | Versión anterior: marca de verificación azul v2.1

Este contenido se aplica a: marca de verificación v2.1 | Última versión marca de verificación azul v4.0 (GA)

Importante

El comportamiento de redacción de modelos se ha cambiado para api-version=2024-11-30 (GA). Para más información, vea Modelos personalizados redactados. El comportamiento siguiente solo se aplica a la versión v3.1 y versiones anteriores.

Un modelo compuesto se crea tomando una colección de modelos personalizados y asignándolos a un único id. de modelo. Puede asignar hasta 200 modelos personalizados entrenados a un único id. de modelo compuesto. Cuando se envía un documento a un modelo compuesto, el servicio realiza un paso de clasificación para decidir qué modelo personalizado representa con exactitud el formulario presentado para el análisis. Los modelos compuestos resultan útiles al entrenar varios modelos y se quieren agrupar para analizar tipos de formulario parecidos. Por ejemplo, el modelo compuesto puede incluir modelos personalizados entrenados para analizar sus pedidos de compra de suministros, equipos y mobiliario. En lugar de intentar seleccionar manualmente el modelo adecuado, puede usar un modelo compuesto para determinar el modelo personalizado adecuado para cada análisis y extracción.

Para más información, consulte Modelos personalizados compuestos.

En este artículo descubrirá cómo crear y usar modelos personalizados compuestos para analizar los formularios y documentos.

Requisitos previos

Para comenzar, necesitará los recursos siguientes:

  • Una suscripción de Azure. Puede crear una suscripción de Azure gratuita.

  • Una instancia de Documento de inteligencia. Una vez que tenga la suscripción de Azure, cree un recurso de Inteligencia de documentos en Azure Portal para obtener la clave y el punto de conexión. Si tiene un recurso de Inteligencia de documentos existente, vaya directamente a la página del recurso. Puede usar el plan de tarifa gratis (F0) para probar el servicio y actualizarlo más adelante a un plan de pago para producción.

    1. Una vez implementado el recurso, seleccione Ir al recurso.

    2. Copie los valores de Claves y punto de conexión de Azure Portal y péguelos donde le resulte más cómodo; por ejemplo, el Bloc de notas de Microsoft. Necesitará los valores de punto de conexión y clave para conectar la aplicación a la API de Inteligencia de documentos.

Fotografía fija donde se muestra cómo acceder a la clave de recurso y a la dirección URL del punto de conexión.

Sugerencia

Para obtener más información, consulte Creación de un recurso de Documento de inteligencia.

  • Una cuenta de almacenamiento de Azure. Si no sabe cómo crear una cuenta de almacenamiento de Azure, siga el inicio rápido de Azure Storage para Azure Portal. Puede usar el plan de tarifa gratis (F0) para probar el servicio y actualizarlo más adelante a un plan de pago para producción.

Creación de los modelos personalizados

En primer lugar, necesitará un conjunto de modelos personalizados para componer. Puede usar las bibliotecas cliente, API de REST o Document Intelligence Studio. Los pasos son los siguientes:

Ensamblado del conjunto de datos de entrenamiento

La construcción de un modelo personalizado comienza con el establecimiento de su conjunto de datos de entrenamiento. Necesitará un mínimo de cinco formularios completados del mismo tipo para su conjunto de datos de ejemplo. Pueden ser de distintos tipos de archivo (jpg, png, pdf, tiff) y contener texto y escritura a mano. Los formularios deben seguir los requisitos de entrada de Documento de inteligencia.

Sugerencia

Siga estas sugerencias para optimizar el conjunto de datos para el entrenamiento:

  • Si es posible, use documentos PDF de texto en lugar de documentos basados en imágenes. Los archivos PDF digitalizados se tratan como imágenes.
  • En el caso de los formularios rellenados, use ejemplos en los que estén todos los campos rellenados.
  • Use formularios con valores distintos en cada campo.
  • Si las imágenes de los formularios son de menor calidad, use un conjunto de datos más grande (con entre 10 y 15 imágenes, por ejemplo).

Consulte Creación de un conjunto de datos de entrenamiento para ver sugerencias sobre cómo recopilar los documentos de entrenamiento.

Carga del conjunto de datos de entrenamiento

Una vez recopilado un conjunto de documentos de entrenamiento, deberá cargar los datos de entrenamiento en un contenedor de Azure Blob Storage.

Si desea usar datos etiquetados manualmente, también tendrá que cargar los archivos .labels.json y .ocr.json correspondientes a los documentos de entrenamiento.

Entrenamiento del modelo personalizado

Al entrenar su modelo con datos etiquetados, el modelo usa un aprendizaje supervisado para extraer los valores de interés, mediante los formularios etiquetados que se proporcionan. Los datos etiquetados derivan en modelos con mejor rendimiento y pueden generar modelos que funcionen con formularios complejos o formularios que contengan valores sin claves.

Documento de inteligencia usa la API del modelo de diseño pregenerados para aprender los tamaños y las posiciones esperados de los elementos de texto tipográficos y manuscritos, y para extraer tablas. A continuación, usa etiquetas especificadas por el usuario para aprender las asociaciones clave-valor y las tablas de los documentos. Se recomienda usar cinco formularios etiquetados manualmente del mismo tipo (la misma estructura) para empezar a entrenar un nuevo modelo. Después, agregue más datos etiquetados, según sea necesario, para mejorar la precisión del modelo. Documento de inteligencia permite entrenar un modelo para extraer pares de valores clave y tablas mediante funcionalidades de aprendizaje supervisado.

Para crear modelos personalizados, empiece por configurar el proyecto:

  1. En la página principal de Studio, seleccione Crear nuevo en la tarjeta Modelo personalizado.

  2. Use el comando ➕ Crear un proyecto para iniciar el asistente para la configuración del nuevo proyecto.

  3. Escriba los detalles del proyecto, seleccione la suscripción y el recurso de Azure y el contenedor de Azure Blob Storage que contiene los datos.

  4. Revise, envíe la configuración y cree el proyecto.

Animación que muestra cómo crear un proyecto personalizado en Studio de Documento de inteligencia.

Al crear los modelos personalizados, es posible que tenga que extraer colecciones de datos de los documentos. Las colecciones pueden aparecer en uno de estos dos formatos. usando tablas como patrón visual:

  • Recuento dinámico o variable de valores (filas) para un conjunto determinado de campos (columnas)

  • Colección específica de valores para un conjunto determinado de campos (columnas o filas)

Consulte Studio de Documento de inteligencia: etiquetado como tablas

Creación de un modelo compuesto

Nota

la operación create compose model solo está disponible para los modelos personalizados entrenados con etiquetas. Al intentar crear modelos compuestos sin etiquetar se producirá un error.

Con la operación de creación de modelo compuesto, puede crear hasta 100 modelos personalizados entrenados con un único identificador de modelo. Al analizar documentos con un modelo compuesto, Documento de inteligencia primero clasifica el formulario que ha enviado, luego elige el mejor modelo asignado que coincida y, por último, devuelve los resultados de ese modelo. Esta operación resulta útil cuando los formularios de entrada pueden pertenecer a una de varias plantillas.

Una vez completado correctamente el proceso de entrenamiento, puede empezar a crear el modelo compuesto. Estos son los pasos para crear y usar modelos compuestos:

Recopilación de los identificadores de modelo

Al entrenar modelos mediante Studio de Documento de inteligencia, el identificador de modelo se encuentra en el menú Modelos de un proyecto:

Captura de pantalla de la ventana de configuración de modelos en Studio de Documento de inteligencia.

Composición de los modelos personalizados

  1. Seleccione un proyecto de modelos personalizados.

  2. En el proyecto, seleccione el elemento de menú Models.

  3. En la lista resultante de modelos, seleccione los modelos que desea componer.

  4. Elija el botón Compose (Componer) en la esquina superior izquierda.

  5. En la ventana emergente, asígnele un nombre al nuevo modelo compuesto y seleccione Compose (Componer).

  6. Una vez finalizada la operación, el modelo recién compuesto aparecerá en la lista.

  7. Una vez que el modelo esté listo, use el comando Probar para validarlo con los documentos de prueba y observar los resultados.

Análisis de documentos

La operación Analizar del modelo personalizado requiere que proporcione el parámetro modelID en la llamada a Documento de inteligencia. Debe proporcionar el identificador de modelo compuesto para el parámetro modelID de las aplicaciones.

Captura de pantalla de un Id. de modelo compuesto en Studio de Documento de inteligencia.

Administración de los modelos compuestos

Puede administrar los modelos personalizados a lo largo de los ciclos de vida:

  • Pruebe y valide nuevos documentos.
  • Descargue el modelo para usarlo en las aplicaciones.
  • Elimine el modelo cuando se complete su ciclo de vida.

Captura de pantalla de un modelo compuesto en Studio de Documento de inteligencia

Magnífico. Ha aprendido los pasos para crear modelos personalizados y compuestos y usarlos en proyectos y aplicaciones de Documento de inteligencia.

Pasos siguientes

Pruebe uno de nuestros inicios rápidos de Documento de inteligencia:

C#

Documento de inteligencia emplea tecnología avanzada de aprendizaje automático para detectar y extraer información de imágenes de documento y devolver los datos extraídos en una salida JSON estructurada. Con Documento de inteligencia, puede entrenar modelos personalizados independientes o combinar modelos personalizados para crear modelos compuestos.

  • Modelos personalizados. Los modelos personalizados de Documento de inteligencia permiten analizar y extraer datos de formularios y documentos específicos de su negocio. Los modelos personalizados se entrenan para sus distintos datos y casos de uso.

  • Modelos compuestos. El modelo compuesto se crea tomando una colección de modelos personalizados y asignándolos a un único modelo que abarca sus tipos de formulario. Cuando se envía un documento a un modelo compuesto, el servicio realiza un paso de clasificación para decidir qué modelo personalizado representa con exactitud el formulario presentado para el análisis.

En este artículo, aprenderá a crear modelos personalizados y compuestos de Documento de inteligencia con nuestra herramienta de etiquetado de ejemplo de Documento de inteligencia, las API de REST o las bibliotecas cliente.

Herramienta de etiquetado de muestras

Pruebe a extraer datos de formularios personalizados mediante nuestra herramienta de etiquetado de ejemplo. Tendrá que supervisar los recursos siguientes:

Captura de pantalla de ubicación de las claves y el punto de conexión en Azure Portal.

En la interfaz de usuario de Documento de inteligencia:

  1. Seleccione Use Personalizado para entrenar un modelo con etiquetas y obtener pares clave-valor.

Recorte de pantalla de la opción de selección de modelo personalizado de la herramienta `FOTT`.

  1. En la ventana siguiente, seleccione Nuevo proyecto:

Recorte de pantalla de la opción de selección de nuevo proyecto de la herramienta `FOTT`.

Creación de los modelos

Estos son los pasos para compilar, entrenar y usar modelos personalizados y compuestos:

Ensamblado del conjunto de datos de entrenamiento

La construcción de un modelo personalizado comienza con el establecimiento de su conjunto de datos de entrenamiento. Necesitará un mínimo de cinco formularios completados del mismo tipo para su conjunto de datos de ejemplo. Pueden ser de distintos tipos de archivo (jpg, png, pdf, tiff) y contener texto y escritura a mano. Los formularios deben seguir los requisitos de entrada de Documento de inteligencia.

Carga del conjunto de datos de entrenamiento

Tendrá que cargar los datos de entrenamiento en un contenedor de Azure Blob Storage. Si no sabe cómo crear una cuenta de almacenamiento de Azure con un contenedor, vea el inicio rápido de Azure Storage para Azure Portal. Puede usar el plan de tarifa gratis (F0) para probar el servicio y actualizarlo más adelante a un plan de pago para producción.

Entrenamiento del modelo personalizado

El modelo se entrena con conjuntos de datos etiquetados. Los conjuntos de datos etiquetados se basan en la API de diseño precompilada, pero se incluyen aportaciones humanas complementarias, como sus etiquetas específicas y las ubicaciones de los campos. Comience con al menos cinco formularios completados del mismo tipo para los datos de entrenamiento etiquetados.

Al entrenar con datos etiquetados, el modelo realiza un aprendizaje supervisado para extraer los valores de interés mediante los formularios etiquetados que se proporcionan. Los datos etiquetados derivan en modelos con mejor rendimiento y pueden generar modelos que funcionen con formularios complejos o formularios que contengan valores sin claves.

Documento de inteligencia usa la API Diseño para aprender los tamaños y las posiciones esperados del tipo de letra y los elementos de texto manuscritos y para extraer tablas. A continuación, usa etiquetas especificadas por el usuario para aprender las asociaciones clave-valor y las tablas de los documentos. Se recomienda usar cinco formularios etiquetados manualmente del mismo tipo (la misma estructura) para empezar a entrenar un nuevo modelo. Agregue más datos etiquetados, según sea necesario, para mejorar la precisión del modelo. Documento de inteligencia permite entrenar un modelo para extraer pares de valores clave y tablas mediante funcionalidades de aprendizaje supervisado.

Introducción al entrenamiento con etiquetas

[VÍDEO https://learn.microsoft.com/Shows/Docs-Azure/Azure-Form-Recognizer/player]

Creación de un modelo compuesto

Nota

El modelo compuesto solo está disponible para los modelos personalizados entrenados con etiquetas. Al intentar crear modelos compuestos sin etiquetar se producirá un error.

Con la operación de modelo compuesto, puede crear hasta 200 modelos personalizados entrenados con un único identificador de modelo. Cuando llame a la función de análisis con el identificador de modelo compuesto, Documento de inteligencia clasificará el formulario que envió primero, elegirá el mejor modelo coincidente y después devolverá los resultados de ese modelo. Esta operación resulta útil cuando los formularios de entrada pueden pertenecer a una de varias plantillas.

Con la herramienta de etiquetado de ejemplo de Documento de inteligencia, la API de REST o los las bibliotecas cliente, siga estos pasos para configurar un modelo compuesto:

  1. Recopilación de los identificadores de modelo personalizado
  2. Composición de los modelos personalizados

Recopilación de los identificadores de modelo personalizado

Una vez que el proceso de entrenamiento se ha completado correctamente, se le asignará un identificador de modelo al modelo personalizado. Puede recuperar un identificador de modelo de la manera siguiente:

Al entrenar modelos mediante la herramienta de etiquetado de ejemplo de Documento de inteligencia, el identificador de modelo se encuentra en la ventana Resultados del entrenamiento:

Captura de pantalla de la ventana Resultados del entrenamiento.

Composición de los modelos personalizados

Después de recopilar los modelos personalizados que corresponden a un solo tipo de formulario, puede componerlos en un solo modelo.

La herramienta de etiquetado de muestras le permite empezar a entrenar modelos rápidamente y a componerlos con un único id. de modelo.

Una vez completado el entrenamiento, componga los modelos de la siguiente manera:

  1. En el menú del raíl izquierdo, seleccione el icono Componer modelo (flecha de combinación).

  2. En la ventana principal, seleccione los modelos a los que quiere asignar un único identificador de modelo. Los modelos con el icono de flechas ya son modelos compuestos.

  3. Elija el botón Compose (Componer) en la esquina superior izquierda.

  4. En la ventana emergente, asígnele un nombre al nuevo modelo compuesto y seleccione Compose (Componer).

Una vez finalizada la operación, el modelo recién compuesto aparecerá en la lista.

Captura de pantalla de ventana de composición de modelos.

Análisis de documentos con el modelo personalizado o compuesto

La operación Analizar del formulario personalizado requiere que proporcione el parámetro modelID en la llamada a Documento de inteligencia. Puede proporcionar un único identificador de modelo personalizado o un identificador de modelo compuesto para el parámetro modelID.

  1. En el menú del panel izquierdo de la herramienta, seleccione el icono Analyze (bombilla).

  2. Elija un archivo local o una dirección URL de imagen para analizar.

  3. Seleccione el botón Run Analysis (Ejecutar análisis).

  4. La herramienta aplicará etiquetas en los cuadros de límite e informará del porcentaje de confianza de cada etiqueta.

Captura de pantalla de la ventana de análisis de formulario personalizado de la herramienta Documento de inteligencia.

Para probar los modelos recién entrenados, analice los formularios que no formaron parte del conjunto de datos de entrenamiento. En función de la precisión notificada, es posible que desee realizar más entrenamiento para mejorar el modelo. Puede continuar con entrenamiento adicional para mejorar los resultados.

Administración de modelos personalizados

Puede administrar los modelos personalizados a lo largo de su ciclo de vida. Así, puede ver una lista de todos los modelos personalizados de su suscripción, recuperar información sobre un modelo personalizado concreto, y eliminar modelos personalizados de su cuenta.

Estupendo. Ha aprendido los pasos para crear modelos personalizados y compuestos y usarlos en proyectos y aplicaciones de Documento de inteligencia.

Pasos siguientes

Para más información sobre la biblioteca cliente de Documento de inteligencia, consulte nuestra documentación de referencia de la API.