En este artículo se muestra cómo llamar a la API Image Analysis versión 3.2 para devolver información sobre las características visuales de una imagen. También muestra cómo analizar la información devuelta mediante los SDK del cliente o la API de REST.
El código de esta guía usa imágenes remotas referenciadas por URL. Es posible que quiera probar imágenes diferentes por su cuenta para ver la funcionalidad completa de las características de Análisis de imágenes.
Al analizar una imagen remota, se especifica la URL de la imagen formateando el cuerpo de la petición de la siguiente manera: {"url":"http://example.com/images/test.jpg"}
.
Para analizar una imagen local, coloque los datos de la imagen binaria en el cuerpo de la solicitud HTTP.
En la clase principal, guarde una referencia a la URL de la imagen que desea analizar.
// URL image used for analyzing an image (image of puppy)
private const string ANALYZE_URL_IMAGE = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/refs/heads/master/ComputerVision/Images/dog.jpg";
Para analizar una imagen local, consulte los métodos de ComputerVisionClient, como AnalyzeImageInStreamAsync
. O bien, consulte el código de ejemplo en GitHub para escenarios relacionados con imágenes locales.
En la clase principal, guarde una referencia a la URL de la imagen que desea analizar.
String pathToRemoteImage = "https://github.com/Azure-Samples/cognitive-services-sample-data-files/raw/master/ComputerVision/Images/faces.jpg";
Para analizar una imagen local, consulte los métodos ComputerVision, como AnalyzeImage
. O bien, consulte el código de ejemplo en GitHub para escenarios relacionados con imágenes locales.
En la función principal, guarde una referencia a la URL de la imagen que desea analizar.
const describeURL = 'https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/celebrities.jpg';
Para analizar una imagen local, consulte los métodos de ComputerVisionClient, como describeImageInStream
. O bien, consulte el código de ejemplo en GitHub para escenarios relacionados con imágenes locales.
Guarde una referencia a la URL de la imagen que desea analizar.
remote_image_url = "https://moderatorsampleimages.blob.core.windows.net/samples/sample16.png"
Para analizar una imagen local, consulte los métodos de ComputerVisionClientOperationsMixin, como analyze_image_in_stream
. O bien, consulte el código de ejemplo en GitHub para escenarios relacionados con imágenes locales.
Analyze API proporciona acceso a todas las características de análisis de imágenes del servicio. Elija qué operaciones realizar en función de su propio caso de uso. Para obtener una descripción de cada característica, consulte la información general de Azure AI Vision. En los ejemplos de las secciones siguientes se agregan todas las características visuales disponibles, pero para un uso práctico, es probable que solo necesite una o dos.
Puede especificar qué funciones quiere usar mediante la configuración de los parámetros de consulta de la URL de la API de análisis. Un parámetro puede tener varios valores, que se separan por comas. Cada característica que especifique requiere más tiempo de cálculo, por lo que solo debe especificar lo que necesita.
Parámetro URL |
Value |
Descripción |
features |
Read |
lee el texto visible en la imagen y lo genera como datos JSON estructurados |
features |
Description |
describe el contenido de la imagen con una frase completa en los idiomas admitidos. |
features |
SmartCrops |
busca las coordenadas del rectángulo que recortarían la imagen a una relación de aspecto deseada al tiempo que conservaba el área de interés |
features |
Objects |
Detecta varios objetos en una imagen, incluida la ubicación aproximada. El argumento Objects solo está disponible en inglés |
features |
Tags |
etiqueta la imagen con una lista detallada de palabras relacionadas con el contenido de la imagen |
Una URL rellenada tiene el siguiente aspecto:
<endpoint>/vision/v3.2/analyze?visualFeatures=Tags
Defina el nuevo método para el análisis de imágenes. Agregue el código siguiente, que especifica las características visuales que desea extraer en el análisis. Vea la enumeración VisualFeatureTypes para obtener una lista completa.
/*
* ANALYZE IMAGE - URL IMAGE
* Analyze URL image. Extracts captions, categories, tags, objects, faces, racy/adult/gory content,
* brands, celebrities, landmarks, color scheme, and image types.
*/
public static async Task AnalyzeImageUrl(ComputerVisionClient client, string imageUrl)
{
Console.WriteLine("----------------------------------------------------------");
Console.WriteLine("ANALYZE IMAGE - URL");
Console.WriteLine();
// Creating a list that defines the features to be extracted from the image.
List<VisualFeatureTypes?> features = new List<VisualFeatureTypes?>()
{
VisualFeatureTypes.Categories, VisualFeatureTypes.Description,
VisualFeatureTypes.Faces, VisualFeatureTypes.ImageType,
VisualFeatureTypes.Tags, VisualFeatureTypes.Adult,
VisualFeatureTypes.Color, VisualFeatureTypes.Brands,
VisualFeatureTypes.Objects
};
Especifique qué características visuales desea extraer en el análisis. Vea la enumeración VisualFeatureTypes para obtener una lista completa.
// This list defines the features to be extracted from the image.
List<VisualFeatureTypes> featuresToExtractFromRemoteImage = new ArrayList<>();
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.DESCRIPTION);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.CATEGORIES);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.TAGS);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.FACES);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.ADULT);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.COLOR);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.IMAGE_TYPE);
Especifique qué características visuales desea extraer en el análisis. Vea la enumeración VisualFeatureTypes para obtener una lista completa.
// Get the visual feature for analysis
const features = ['Categories','Brands','Adult','Color','Description','Faces','Image_type','Objects','Tags'];
const domainDetails = ['Celebrities','Landmarks'];
Especifique qué características visuales desea extraer en el análisis. Vea la enumeración VisualFeatureTypes para obtener una lista completa.
print("===== Analyze an image - remote =====")
# Select the visual feature(s) you want.
remote_image_features = [VisualFeatureTypes.categories,VisualFeatureTypes.brands,VisualFeatureTypes.adult,VisualFeatureTypes.color,VisualFeatureTypes.description,VisualFeatureTypes.faces,VisualFeatureTypes.image_type,VisualFeatureTypes.objects,VisualFeatureTypes.tags]
remote_image_details = [Details.celebrities,Details.landmarks]
También puede especificar el idioma de los datos devueltos.
El siguiente parámetro de consulta de la dirección URL especifica el idioma. El valor predeterminado es en
.
Parámetro URL |
Value |
Descripción |
language |
en |
Inglés |
language |
es |
Español |
language |
ja |
Japonés |
language |
pt |
Portugués |
language |
zh |
Chino simplificado |
Una URL rellenada tiene el siguiente aspecto:
<endpoint>/vision/v3.2/analyze?visualFeatures=Tags&language=en
Use el parámetro de lenguaje de la llamada AnalyzeImageAsync para especificar un lenguaje.
Lenguaje |
Valor |
English |
en |
Español |
es |
Japonés |
ja |
Portugués |
pt |
Chino simplificado |
zh |
Una llamada al método que especifica un lenguaje podría tener el siguiente aspecto.
ImageAnalysis results = await client.AnalyzeImageAsync(imageUrl, visualFeatures: features, language: "en");
Use la entrada AnalyzeImageOptionalParameter en la llamada a Analyze para especificar un lenguaje.
Lenguaje |
Valor |
English |
en |
Español |
es |
Japonés |
ja |
Portugués |
pt |
Chino simplificado |
zh |
Una llamada al método que especifica un lenguaje podría tener el siguiente aspecto.
ImageAnalysis analysis = compVisClient.computerVision().analyzeImage().withUrl(pathToRemoteImage)
.withVisualFeatures(featuresToExtractFromLocalImage)
.language("en")
.execute();
Use la propiedad language
de la entradaComputerVisionClientAnalyzeImageOptionalParams en la llamada Analyze para especificar un idioma.
Lenguaje |
Valor |
English |
en |
Español |
es |
Japonés |
ja |
Portugués |
pt |
Chino simplificado |
zh |
Una llamada al método que especifica un lenguaje podría tener el siguiente aspecto.
const result = (await computerVisionClient.analyzeImage(imageURL,{visualFeatures: features, language: 'en'}));
Use el parámetro language
de la llamada analyze_image para especificar un idioma.
Lenguaje |
Valor |
English |
en |
Español |
es |
Japonés |
ja |
Portugués |
pt |
Chino simplificado |
zh |
Una llamada al método que especifica un lenguaje podría tener el siguiente aspecto.
results_remote = computervision_client.analyze_image(remote_image_url , remote_image_features, remote_image_details, 'en')
Esta sección muestra cómo analizar los resultados de la llamada a la API. Se incluye la propia llamada a la API.
El servicio devuelve una respuesta HTTP 200
y el cuerpo contiene los datos devueltos en forma de cadena JSON. El texto siguiente es un ejemplo de una respuesta JSON.
{
"metadata":
{
"width": 300,
"height": 200
},
"tagsResult":
{
"values":
[
{
"name": "grass",
"confidence": 0.9960499405860901
},
{
"name": "outdoor",
"confidence": 0.9956876635551453
},
{
"name": "building",
"confidence": 0.9893627166748047
},
{
"name": "property",
"confidence": 0.9853052496910095
},
{
"name": "plant",
"confidence": 0.9791355729103088
}
]
}
}
Códigos de error
Consulte la siguiente lista de posibles errores y sus causas:
- 400
InvalidImageUrl
: La dirección URL de la imagen tiene un formato incorrecto o no es accesible
InvalidImageFormat
: Los datos de entrada no son una imagen válida
InvalidImageSize
: La imagen de entrada es demasiado grande
NotSupportedVisualFeature
: El tipo de característica especificado no es válido
NotSupportedImage
: La imagen no admitida, por ejemplo, pornografía infantil
InvalidDetails
: Valor de parámetro detail
no admitido
NotSupportedLanguage
: La operación solicitada no se admite en el idioma especificado
BadArgument
: Se proporcionan más detalles en el mensaje de error
- 415: error de tipo de medio no compatible. El Content-Type no está en los tipos permitidos:
- Para una dirección URL de imagen, Content-Type debe ser
application/json
- En el caso de los datos de imagen binarios, Content-Type debe ser
application/octet-stream
o multipart/form-data
- 500
FailedToProcess
Timeout
: Se agota el tiempo de espera del procesamiento de imágenes
InternalServerError
El siguiente código llama a la API de análisis de imágenes e imprime los resultados en la consola.
// Analyze the URL image
ImageAnalysis results = await client.AnalyzeImageAsync(imageUrl, visualFeatures: features);
// Summarizes the image content.
Console.WriteLine("Summary:");
foreach (var caption in results.Description.Captions)
{
Console.WriteLine($"{caption.Text} with confidence {caption.Confidence}");
}
Console.WriteLine();
// Display categories the image is divided into.
Console.WriteLine("Categories:");
foreach (var category in results.Categories)
{
Console.WriteLine($"{category.Name} with confidence {category.Score}");
}
Console.WriteLine();
// Image tags and their confidence score
Console.WriteLine("Tags:");
foreach (var tag in results.Tags)
{
Console.WriteLine($"{tag.Name} {tag.Confidence}");
}
Console.WriteLine();
// Objects
Console.WriteLine("Objects:");
foreach (var obj in results.Objects)
{
Console.WriteLine($"{obj.ObjectProperty} with confidence {obj.Confidence} at location {obj.Rectangle.X}, " +
$"{obj.Rectangle.X + obj.Rectangle.W}, {obj.Rectangle.Y}, {obj.Rectangle.Y + obj.Rectangle.H}");
}
Console.WriteLine();
// Faces
Console.WriteLine("Faces:");
foreach (var face in results.Faces)
{
Console.WriteLine($"A {face.Gender} of age {face.Age} at location {face.FaceRectangle.Left}, " +
$"{face.FaceRectangle.Left}, {face.FaceRectangle.Top + face.FaceRectangle.Width}, " +
$"{face.FaceRectangle.Top + face.FaceRectangle.Height}");
}
Console.WriteLine();
// Adult or racy content, if any.
Console.WriteLine("Adult:");
Console.WriteLine($"Has adult content: {results.Adult.IsAdultContent} with confidence {results.Adult.AdultScore}");
Console.WriteLine($"Has racy content: {results.Adult.IsRacyContent} with confidence {results.Adult.RacyScore}");
Console.WriteLine($"Has gory content: {results.Adult.IsGoryContent} with confidence {results.Adult.GoreScore}");
Console.WriteLine();
// Well-known (or custom, if set) brands.
Console.WriteLine("Brands:");
foreach (var brand in results.Brands)
{
Console.WriteLine($"Logo of {brand.Name} with confidence {brand.Confidence} at location {brand.Rectangle.X}, " +
$"{brand.Rectangle.X + brand.Rectangle.W}, {brand.Rectangle.Y}, {brand.Rectangle.Y + brand.Rectangle.H}");
}
Console.WriteLine();
// Celebrities in image, if any.
Console.WriteLine("Celebrities:");
foreach (var category in results.Categories)
{
if (category.Detail?.Celebrities != null)
{
foreach (var celeb in category.Detail.Celebrities)
{
Console.WriteLine($"{celeb.Name} with confidence {celeb.Confidence} at location {celeb.FaceRectangle.Left}, " +
$"{celeb.FaceRectangle.Top}, {celeb.FaceRectangle.Height}, {celeb.FaceRectangle.Width}");
}
}
}
Console.WriteLine();
// Popular landmarks in image, if any.
Console.WriteLine("Landmarks:");
foreach (var category in results.Categories)
{
if (category.Detail?.Landmarks != null)
{
foreach (var landmark in category.Detail.Landmarks)
{
Console.WriteLine($"{landmark.Name} with confidence {landmark.Confidence}");
}
}
}
Console.WriteLine();
// Identifies the color scheme.
Console.WriteLine("Color Scheme:");
Console.WriteLine("Is black and white?: " + results.Color.IsBWImg);
Console.WriteLine("Accent color: " + results.Color.AccentColor);
Console.WriteLine("Dominant background color: " + results.Color.DominantColorBackground);
Console.WriteLine("Dominant foreground color: " + results.Color.DominantColorForeground);
Console.WriteLine("Dominant colors: " + string.Join(",", results.Color.DominantColors));
Console.WriteLine();
// Detects the image types.
Console.WriteLine("Image Type:");
Console.WriteLine("Clip Art Type: " + results.ImageType.ClipArtType);
Console.WriteLine("Line Drawing Type: " + results.ImageType.LineDrawingType);
Console.WriteLine();
El siguiente código llama a la API de análisis de imágenes e imprime los resultados en la consola.
// Call the Computer Vision service and tell it to analyze the loaded image.
ImageAnalysis analysis = compVisClient.computerVision().analyzeImage().withUrl(pathToRemoteImage)
.withVisualFeatures(featuresToExtractFromRemoteImage).execute();
// Display image captions and confidence values.
System.out.println("\nCaptions: ");
for (ImageCaption caption : analysis.description().captions()) {
System.out.printf("\'%s\' with confidence %f\n", caption.text(), caption.confidence());
}
// Display image category names and confidence values.
System.out.println("\nCategories: ");
for (Category category : analysis.categories()) {
System.out.printf("\'%s\' with confidence %f\n", category.name(), category.score());
}
// Display image tags and confidence values.
System.out.println("\nTags: ");
for (ImageTag tag : analysis.tags()) {
System.out.printf("\'%s\' with confidence %f\n", tag.name(), tag.confidence());
}
// Display any faces found in the image and their location.
System.out.println("\nFaces: ");
for (FaceDescription face : analysis.faces()) {
System.out.printf("\'%s\' of age %d at location (%d, %d), (%d, %d)\n", face.gender(), face.age(),
face.faceRectangle().left(), face.faceRectangle().top(),
face.faceRectangle().left() + face.faceRectangle().width(),
face.faceRectangle().top() + face.faceRectangle().height());
}
// Display whether any adult or racy content was detected and the confidence
// values.
System.out.println("\nAdult: ");
System.out.printf("Is adult content: %b with confidence %f\n", analysis.adult().isAdultContent(),
analysis.adult().adultScore());
System.out.printf("Has racy content: %b with confidence %f\n", analysis.adult().isRacyContent(),
analysis.adult().racyScore());
// Display the image color scheme.
System.out.println("\nColor scheme: ");
System.out.println("Is black and white: " + analysis.color().isBWImg());
System.out.println("Accent color: " + analysis.color().accentColor());
System.out.println("Dominant background color: " + analysis.color().dominantColorBackground());
System.out.println("Dominant foreground color: " + analysis.color().dominantColorForeground());
System.out.println("Dominant colors: " + String.join(", ", analysis.color().dominantColors()));
// Display any celebrities detected in the image and their locations.
System.out.println("\nCelebrities: ");
for (Category category : analysis.categories()) {
if (category.detail() != null && category.detail().celebrities() != null) {
for (CelebritiesModel celeb : category.detail().celebrities()) {
System.out.printf("\'%s\' with confidence %f at location (%d, %d), (%d, %d)\n", celeb.name(),
celeb.confidence(), celeb.faceRectangle().left(), celeb.faceRectangle().top(),
celeb.faceRectangle().left() + celeb.faceRectangle().width(),
celeb.faceRectangle().top() + celeb.faceRectangle().height());
}
}
}
// Display any landmarks detected in the image and their locations.
System.out.println("\nLandmarks: ");
for (Category category : analysis.categories()) {
if (category.detail() != null && category.detail().landmarks() != null) {
for (LandmarksModel landmark : category.detail().landmarks()) {
System.out.printf("\'%s\' with confidence %f\n", landmark.name(), landmark.confidence());
}
}
}
// Display what type of clip art or line drawing the image is.
System.out.println("\nImage type:");
System.out.println("Clip art type: " + analysis.imageType().clipArtType());
System.out.println("Line drawing type: " + analysis.imageType().lineDrawingType());
El siguiente código llama a la API de análisis de imágenes e imprime los resultados en la consola.
const result = (await computerVisionClient.analyzeImage(facesImageURL,{visualFeatures: features},{details: domainDetails}));
// Detect faces
// Print the bounding box, gender, and age from the faces.
const faces = result.faces
if (faces.length) {
console.log(`${faces.length} face${faces.length == 1 ? '' : 's'} found:`);
for (const face of faces) {
console.log(` Gender: ${face.gender}`.padEnd(20)
+ ` Age: ${face.age}`.padEnd(10) + `at ${formatRectFaces(face.faceRectangle)}`);
}
} else { console.log('No faces found.'); }
// Formats the bounding box
function formatRectFaces(rect) {
return `top=${rect.top}`.padEnd(10) + `left=${rect.left}`.padEnd(10) + `bottom=${rect.top + rect.height}`.padEnd(12)
+ `right=${rect.left + rect.width}`.padEnd(10) + `(${rect.width}x${rect.height})`;
}
// Detect Objects
const objects = result.objects;
console.log();
// Print objects bounding box and confidence
if (objects.length) {
console.log(`${objects.length} object${objects.length == 1 ? '' : 's'} found:`);
for (const obj of objects) { console.log(` ${obj.object} (${obj.confidence.toFixed(2)}) at ${formatRectObjects(obj.rectangle)}`); }
} else { console.log('No objects found.'); }
// Formats the bounding box
function formatRectObjects(rect) {
return `top=${rect.y}`.padEnd(10) + `left=${rect.x}`.padEnd(10) + `bottom=${rect.y + rect.h}`.padEnd(12)
+ `right=${rect.x + rect.w}`.padEnd(10) + `(${rect.w}x${rect.h})`;
}
console.log();
// Detect tags
const tags = result.tags;
console.log(`Tags: ${formatTags(tags)}`);
// Format tags for display
function formatTags(tags) {
return tags.map(tag => (`${tag.name} (${tag.confidence.toFixed(2)})`)).join(', ');
}
console.log();
// Detect image type
const types = result.imageType;
console.log(`Image appears to be ${describeType(types)}`);
function describeType(imageType) {
if (imageType.clipArtType && imageType.clipArtType > imageType.lineDrawingType) return 'clip art';
if (imageType.lineDrawingType && imageType.clipArtType < imageType.lineDrawingType) return 'a line drawing';
return 'a photograph';
}
console.log();
// Detect Category
const categories = result.categories;
console.log(`Categories: ${formatCategories(categories)}`);
// Formats the image categories
function formatCategories(categories) {
categories.sort((a, b) => b.score - a.score);
return categories.map(cat => `${cat.name} (${cat.score.toFixed(2)})`).join(', ');
}
console.log();
// Detect Brands
const brands = result.brands;
// Print the brands found
if (brands.length) {
console.log(`${brands.length} brand${brands.length != 1 ? 's' : ''} found:`);
for (const brand of brands) {
console.log(` ${brand.name} (${brand.confidence.toFixed(2)} confidence)`);
}
} else { console.log(`No brands found.`); }
console.log();
// Detect Colors
const color = result.color;
printColorScheme(color);
// Print a detected color scheme
function printColorScheme(colors) {
console.log(`Image is in ${colors.isBwImg ? 'black and white' : 'color'}`);
console.log(`Dominant colors: ${colors.dominantColors.join(', ')}`);
console.log(`Dominant foreground color: ${colors.dominantColorForeground}`);
console.log(`Dominant background color: ${colors.dominantColorBackground}`);
console.log(`Suggested accent color: #${colors.accentColor}`);
}
console.log();
// Detect landmarks
const domain = result.landmarks;
// Prints domain-specific, recognized objects
if (domain.length) {
console.log(`${domain.length} ${domain.length == 1 ? 'landmark' : 'landmarks'} found:`);
for (const obj of domain) {
console.log(` ${obj.name}`.padEnd(20) + `(${obj.confidence.toFixed(2)} confidence)`.padEnd(20) + `${formatRectDomain(obj.faceRectangle)}`);
}
} else {
console.log('No landmarks found.');
}
// Formats bounding box
function formatRectDomain(rect) {
if (!rect) return '';
return `top=${rect.top}`.padEnd(10) + `left=${rect.left}`.padEnd(10) + `bottom=${rect.top + rect.height}`.padEnd(12) +
`right=${rect.left + rect.width}`.padEnd(10) + `(${rect.width}x${rect.height})`;
}
console.log();
// Detect Adult content
// Function to confirm racy or not
const isIt = flag => flag ? 'is' : "isn't";
const adult = result.adult;
console.log(`This probably ${isIt(adult.isAdultContent)} adult content (${adult.adultScore.toFixed(4)} score)`);
console.log(`This probably ${isIt(adult.isRacyContent)} racy content (${adult.racyScore.toFixed(4)} score)`);
console.log();
El siguiente código llama a la API de análisis de imágenes e imprime los resultados en la consola.
# Call API with URL and features
results_remote = computervision_client.analyze_image(remote_image_url , remote_image_features, remote_image_details)
# Print results with confidence score
print("Categories from remote image: ")
if (len(results_remote.categories) == 0):
print("No categories detected.")
else:
for category in results_remote.categories:
print("'{}' with confidence {:.2f}%".format(category.name, category.score * 100))
print()
# Detect faces
# Print the results with gender, age, and bounding box
print("Faces in the remote image: ")
if (len(results_remote.faces) == 0):
print("No faces detected.")
else:
for face in results_remote.faces:
print("'{}' of age {} at location {}, {}, {}, {}".format(face.gender, face.age, \
face.face_rectangle.left, face.face_rectangle.top, \
face.face_rectangle.left + face.face_rectangle.width, \
face.face_rectangle.top + face.face_rectangle.height))
# Adult content
# Print results with adult/racy score
print("Analyzing remote image for adult or racy content ... ")
print("Is adult content: {} with confidence {:.2f}".format(results_remote.adult.is_adult_content, results_remote.adult.adult_score * 100))
print("Has racy content: {} with confidence {:.2f}".format(results_remote.adult.is_racy_content, results_remote.adult.racy_score * 100))
print()
# Detect colors
# Print results of color scheme
print("Getting color scheme of the remote image: ")
print("Is black and white: {}".format(results_remote.color.is_bw_img))
print("Accent color: {}".format(results_remote.color.accent_color))
print("Dominant background color: {}".format(results_remote.color.dominant_color_background))
print("Dominant foreground color: {}".format(results_remote.color.dominant_color_foreground))
print("Dominant colors: {}".format(results_remote.color.dominant_colors))
print()
# Detect image type
# Prints type results with degree of accuracy
print("Type of remote image:")
if results_remote.image_type.clip_art_type == 0:
print("Image is not clip art.")
elif results_remote.image_type.line_drawing_type == 1:
print("Image is ambiguously clip art.")
elif results_remote.image_type.line_drawing_type == 2:
print("Image is normal clip art.")
else:
print("Image is good clip art.")
if results_remote.image_type.line_drawing_type == 0:
print("Image is not a line drawing.")
else:
print("Image is a line drawing")
# Detect brands
print("Detecting brands in remote image: ")
if len(results_remote.brands) == 0:
print("No brands detected.")
else:
for brand in results_remote.brands:
print("'{}' brand detected with confidence {:.1f}% at location {}, {}, {}, {}".format( \
brand.name, brand.confidence * 100, brand.rectangle.x, brand.rectangle.x + brand.rectangle.w, \
brand.rectangle.y, brand.rectangle.y + brand.rectangle.h))
# Detect objects
# Print detected objects results with bounding boxes
print("Detecting objects in remote image:")
if len(results_remote.objects) == 0:
print("No objects detected.")
else:
for object in detect_objects_results_remote.objects:
print("object at location {}, {}, {}, {}".format( \
object.rectangle.x, object.rectangle.x + object.rectangle.w, \
object.rectangle.y, object.rectangle.y + object.rectangle.h))
# Describe image
# Get the captions (descriptions) from the response, with confidence level
print("Description of remote image: ")
if (len(results_remote.description.captions) == 0):
print("No description detected.")
else:
for caption in results_remote.description.captions:
print("'{}' with confidence {:.2f}%".format(caption.text, caption.confidence * 100))
print()
# Return tags
# Print results with confidence score
print("Tags in the remote image: ")
if (len(results_remote.tags) == 0):
print("No tags detected.")
else:
for tag in results_remote.tags:
print("'{}' with confidence {:.2f}%".format(tag.name, tag.confidence * 100))
# Detect celebrities
print("Celebrities in the remote image:")
if (len(results_remote.categories.detail.celebrities) == 0):
print("No celebrities detected.")
else:
for celeb in results_remote.categories.detail.celebrities:
print(celeb["name"])
# Detect landmarks
print("Landmarks in the remote image:")
if len(results_remote.categories.detail.landmarks) == 0:
print("No landmarks detected.")
else:
for landmark in results_remote.categories.detail.landmarks:
print(landmark["name"])