Desensamblado x64 anotado
La siguiente función muy sencilla ilustra la convención de llamada x64.
int Simple(int i, int j)
{
return i*5 + j + 3;
}
Esto se compila en código similar al siguiente:
01001080 lea eax,[rdx+rcx*4] ; eax = rdx+rcx*4
01001083 lea eax,[rcx+rax+0x3] ; eax = rcx+rax+3
01001087 ret
Los parámetros i y j se pasan en los registros ecx y edx , respectivamente. Puesto que solo hay dos parámetros, la rutina no usa la pila en absoluto.
El código determinado generado aprovecha tres trucos, uno de los cuales es específico de x64:
La operación lea se puede usar para realizar una serie de operaciones aritméticas simples como una sola operación. La primera instrucción almacena j+i*4 en eax, y la segunda instrucción agrega i+3 al resultado, para un total de j+i*5+3.
Muchas operaciones, como la suma y la multiplicación, se pueden realizar con precisión adicional y, a continuación, truncarse a la precisión correcta. En este caso, el código usa suma y multiplicación de 64 bits. Podemos truncar el resultado de forma segura en 32 bits.
En x64, cualquier operación que se genere en un registro de 32 bits extiende automáticamente el resultado. En este caso, la salida a eax tiene el efecto de truncar el resultado en 32 bits.
Los valores devueltos se pasan en el registro rax . En este caso, el resultado ya está en el registro rax , por lo que la función devuelve.
A continuación, consideramos una función más complicada para demostrar el desensamblado x64 típico:
HRESULT Meaningless(IDispatch *pdisp, DISPID dispid, BOOL fUnique, LPCWSTR pszExe)
{
IQueryAssociations *pqa;
HRESULT hr = AssocCreate(CLSID_QueryAssociations, IID_IQueryAssociations, (void**)&pqa);
if (SUCCEEDED(hr)) {
hr = pqa->Init(ASSOCF_INIT_BYEXENAME, pszExe, NULL, NULL);
if (SUCCEEDED(hr)) {
WCHAR wszName[MAX_PATH];
DWORD cchName = MAX_PATH;
hr = pqa->GetString(0, ASSOCSTR_FRIENDLYAPPNAME, NULL, wszName, &cchName);
if (SUCCEEDED(hr)) {
VARIANTARG rgvarg[2] = { 0 };
V_VT(&rgvarg[0]) = VT_BSTR;
V_BSTR(&rgvarg[0]) = SysAllocString(wszName);
if (V_BSTR(&rgvarg[0])) {
DISPPARAMS dp;
LONG lUnique = InterlockedIncrement(&lCounter);
V_VT(&rgvarg[1]) = VT_I4;
V_I4(&rgvarg[1]) = fUnique ? lUnique : 0;
dp.rgvarg = rgvarg;
dp.cArgs = 2;
dp.rgdispidNamedArgs = NULL;
dp.cNamedArgs = 0;
hr = pdisp->Invoke(dispid, IID_NULL, 0, DISPATCH_METHOD, &dp, NULL, NULL, NULL);
VariantClear(&rgvarg[0]);
VariantClear(&rgvarg[1]);
} else {
hr = E_OUTOFMEMORY;
}
}
}
pqa->Release();
}
return hr;
}
Pasaremos por esta función y la línea de ensamblado equivalente por línea.
Cuando se especifica, los parámetros de la función se almacenan de la siguiente manera:
Rcx = pdisp.
Rdx = despidido.
r8 = fUnique.
r9 = pszExe.
Recuerde que los cuatro primeros parámetros se pasan en los registros. Puesto que esta función solo tiene cuatro parámetros, no se pasa ninguno en la pila.
El ensamblado comienza de la siguiente manera:
Meaningless:
010010e0 push rbx ; save
010010e1 push rsi ; save
010010e2 push rdi ; save
010010e3 push r12d ; save
010010e5 push r13d ; save
010010e7 push r14d ; save
010010e9 push r15d ; save
010010eb sub rsp,0x2c0 ; reserve stack
010010f2 mov rbx,r9 ; rbx = pszExe
010010f5 mov r12d,r8d ; r12 = fUnique (zero-extend)
010010f8 mov r13d,edx ; r13 = dispid (zero-extend)
010010fb mov rsi,rcx ; rsi = pdisp
La función comienza guardando registros no volátiles y, a continuación, reservando espacio de pila para variables locales. A continuación, guarda los parámetros en registros no volátiles. Tenga en cuenta que el destino de las dos instrucciones de movimiento central es un registro de 32 bits, por lo que se extienden implícitamente de cero a 64 bits.
IQueryAssociations *pqa;
HRESULT hr = AssocCreate(CLSID_QueryAssociations, IID_IQueryAssociations, (void**)&pqa);
El primer parámetro de AssocCreate es un CLSID de 128 bits pasado por valor. Puesto que esto no cabe en un registro de 64 bits, el CLSID se copia en la pila y se pasa un puntero a la ubicación de la pila en su lugar.
010010fe movdqu xmm0,oword ptr [CLSID_QueryAssociations (01001060)]
01001106 movdqu oword ptr [rsp+0x60],xmm0 ; temp buffer for first parameter
0100110c lea r8,[rsp+0x58] ; arg3 = &pqa
01001111 lea rdx,[IID_IQueryAssociations (01001070)] ; arg2 = &IID_IQueryAssociations
01001118 lea rcx,[rsp+0x60] ; arg1 = &temporary
0100111d call qword ptr [_imp_AssocCreate (01001028)] ; call
La instrucción movdqu transfiere valores de 128 bits a y desde registros xmmn . En este caso, el código de ensamblado lo usa para copiar el CLSID en la pila. El puntero al CLSID se pasa en r8. Los otros dos argumentos se pasan en rcx y rdx.
if (SUCCEEDED(hr)) {
01001123 test eax,eax
01001125 jl ReturnEAX (01001281)
El código comprueba si el valor devuelto es correcto.
hr = pqa->Init(ASSOCF_INIT_BYEXENAME, pszExe, NULL, NULL);
0100112b mov rcx,[rsp+0x58] ; arg1 = pqa
01001130 mov rax,[rcx] ; rax = pqa.vtbl
01001133 xor r14d,r14d ; r14 = 0
01001136 mov [rsp+0x20],r14 ; arg5 = 0
0100113b xor r9d,r9d ; arg4 = 0
0100113e mov r8,rbx ; arg3 = pszExe
01001141 mov r15d,0x2 ; r15 = 2 (for later)
01001147 mov edx,r15d ; arg2 = 2 (ASSOCF_INIT_BY_EXENAME)
0100114a call qword ptr [rax+0x18] ; call Init method
Se trata de una llamada de función indirecta mediante una tabla virtual de C++. Este puntero se pasa a rcx como primer parámetro. Los tres primeros parámetros se pasan en los registros, mientras que el parámetro final se pasa en la pila. La función reserva 16 bytes para los parámetros pasados en los registros, por lo que el quinto parámetro comienza en rsp+0x20.
if (SUCCEEDED(hr)) {
0100114d mov ebx,eax ; ebx = hr
0100114f test ebx,ebx ; FAILED?
01001151 jl ReleasePQA (01001274) ; jump if so
El código del lenguaje ensamblado guarda el resultado en ebx y comprueba si es un código correcto.
WCHAR wszName[MAX_PATH];
DWORD cchName = MAX_PATH;
hr = pqa->GetString(0, ASSOCSTR_FRIENDLYAPPNAME, NULL, wszName, &cchName);
if (SUCCEEDED(hr)) {
01001157 mov dword ptr [rsp+0x50],0x104 ; cchName = MAX_PATH
0100115f mov rcx,[rsp+0x58] ; arg1 = pqa
01001164 mov rax,[rcx] ; rax = pqa.vtbl
01001167 lea rdx,[rsp+0x50] ; rdx = &cchName
0100116c mov [rsp+0x28],rdx ; arg6 = cchName
01001171 lea rdx,[rsp+0xb0] ; rdx = &wszName[0]
01001179 mov [rsp+0x20],rdx ; arg5 = &wszName[0]
0100117e xor r9d,r9d ; arg4 = 0
01001181 mov r8d,0x4 ; arg3 = 4 (ASSOCSTR_FRIENDLYNAME)
01001187 xor edx,edx ; arg2 = 0
01001189 call qword ptr [rax+0x20] ; call GetString method
0100118c mov ebx,eax ; ebx = hr
0100118e test ebx,ebx ; FAILED?
01001190 jl ReleasePQA (01001274) ; jump if so
Una vez más, configuramos los parámetros y llamamos a una función y, a continuación, probamos el valor devuelto para que se realice correctamente.
VARIANTARG rgvarg[2] = { 0 };
01001196 lea rdi,[rsp+0x82] ; rdi = &rgvarg
0100119e xor eax,eax ; rax = 0
010011a0 mov ecx,0x2e ; rcx = sizeof(rgvarg)
010011a5 rep stosb ; Zero it out
El método idiomático para hacer cero un búfer en x64 es el mismo que x86.
V_VT(&rgvarg[0]) = VT_BSTR;
V_BSTR(&rgvarg[0]) = SysAllocString(wszName);
if (V_BSTR(&rgvarg[0])) {
010011a7 mov word ptr [rsp+0x80],0x8 ; V_VT(&rgvarg[0]) = VT_BSTR
010011b1 lea rcx,[rsp+0xb0] ; arg1 = &wszName[0]
010011b9 call qword ptr [_imp_SysAllocString (01001010)] ; call
010011bf mov [rsp+0x88],rax ; V_BSTR(&rgvarg[0]) = result
010011c7 test rax,rax ; anything allocated?
010011ca je OutOfMemory (0100126f) ; jump if failed
DISPPARAMS dp;
LONG lUnique = InterlockedIncrement(&lCounter);
010011d0 lea rax,[lCounter (01002000)]
010011d7 mov ecx,0x1
010011dc lock xadd [rax],ecx ; interlocked exchange and add
010011e0 add ecx,0x1
InterlockedIncrement se compila directamente en el código de la máquina. La instrucción de bloqueo xadd realiza un intercambio atómico y agrega. El resultado final se almacena en ecx.
V_VT(&rgvarg[1]) = VT_I4;
V_I4(&rgvarg[1]) = fUnique ? lUnique : 0;
010011e3 mov word ptr [rsp+0x98],0x3 ; V_VT(&rgvarg[1]) = VT_I4;
010011ed mov eax,r14d ; rax = 0 (r14d is still zero)
010011f0 test r12d,r12d ; fUnique set?
010011f3 cmovne eax,ecx ; if so, then set rax=lCounter
010011f6 mov [rsp+0xa0],eax ; V_I4(&rgvarg[1]) = ...
Dado que x64 admite la instrucción cmov , la construcción ?: se puede compilar sin usar un salto.
dp.rgvarg = rgvarg;
dp.cArgs = 2;
dp.rgdispidNamedArgs = NULL;
dp.cNamedArgs = 0;
010011fd lea rax,[rsp+0x80] ; rax = &rgvarg[0]
01001205 mov [rsp+0x60],rax ; dp.rgvarg = rgvarg
0100120a mov [rsp+0x70],r15d ; dp.cArgs = 2 (r15 is still 2)
0100120f mov [rsp+0x68],r14 ; dp.rgdispidNamedArgs = NULL
01001214 mov [rsp+0x74],r14d ; dp.cNamedArgs = 0
Este código inicializa el resto de los miembros de DISPPARAMS. Tenga en cuenta que el compilador reutiliza el espacio en la pila usada anteriormente por clSID.
hr = pdisp->Invoke(dispid, IID_NULL, 0, DISPATCH_METHOD, &dp, NULL, NULL, NULL);
01001219 mov rax,[rsi] ; rax = pdisp.vtbl
0100121c mov [rsp+0x40],r14 ; arg9 = 0
01001221 mov [rsp+0x38],r14 ; arg8 = 0
01001226 mov [rsp+0x30],r14 ; arg7 = 0
0100122b lea rcx,[rsp+0x60] ; rcx = &dp
01001230 mov [rsp+0x28],rcx ; arg6 = &dp
01001235 mov word ptr [rsp+0x20],0x1 ; arg5 = 1 (DISPATCH_METHOD)
0100123c xor r9d,r9d ; arg4 = 0
0100123f lea r8,[GUID_NULL (01001080)] ; arg3 = &IID_NULL
01001246 mov edx,r13d ; arg2 = dispid
01001249 mov rcx,rsi ; arg1 = pdisp
0100124c call qword ptr [rax+0x30] ; call Invoke method
0100124f mov ebx,eax ; hr = result
A continuación, el código configura los parámetros y llama al método Invoke .
VariantClear(&rgvarg[0]);
VariantClear(&rgvarg[1]);
01001251 lea rcx,[rsp+0x80] ; arg1 = &rgvarg[0]
01001259 call qword ptr [_imp_VariantClear (01001018)]
0100125f lea rcx,[rsp+0x98] ; arg1 = &rgvarg[1]
01001267 call qword ptr [_imp_VariantClear (01001018)]
0100126d jmp ReleasePQA (01001274)
El código finaliza la rama actual del condicional y omite la rama else .
} else {
hr = E_OUTOFMEMORY;
}
}
OutOfMemory:
0100126f mov ebx,0x8007000e ; hr = E_OUTOFMEMORY
pqa->Release();
ReleasePQA:
01001274 mov rcx,[rsp+0x58] ; arg1 = pqa
01001279 mov rax,[rcx] ; rax = pqa.vtbl
0100127c call qword ptr [rax+0x10] ; release
La rama else.
return hr;
}
0100127f mov eax,ebx ; rax = hr (for return value)
ReturnEAX:
01001281 add rsp,0x2c0 ; clean up the stack
01001288 pop r15d ; restore
0100128a pop r14d ; restore
0100128c pop r13d ; restore
0100128e pop r12d ; restore
01001290 pop rdi ; restore
01001291 pop rsi ; restore
01001292 pop rbx ; restore
01001293 ret ; return (do not pop arguments)
El valor devuelto se almacena en rax y, a continuación, los registros no volátiles se restauran antes de devolver.