Con la finalización del chat, puede simular una conversación de ida y vuelta con un agente de IA. Esto es, por supuesto, útil para crear bots de chat, pero también se puede usar para crear agentes autónomos que puedan completar procesos empresariales, generar código, etc. Como el tipo de modelo principal proporcionado por OpenAI, Google, Mistral, Facebook y otros, la finalización del chat es el servicio de inteligencia artificial más común que agregará al proyecto de kernel semántico.
Al seleccionar un modelo de finalización de chat, deberá tener en cuenta lo siguiente:
De todas las preguntas anteriores, lo más importante es si el modelo admite llamadas a funciones. Si no es así, no podrá usar el modelo para llamar al código existente. La mayoría de los modelos más recientes de OpenAI, Google, Mistral y Amazon admiten llamadas a funciones. Sin embargo, la compatibilidad con modelos de lenguaje pequeños sigue siendo limitada.
Configuración del entorno local
Algunos de los servicios de IA se pueden hospedar localmente y pueden requerir alguna configuración. A continuación se muestran instrucciones para aquellos que admiten esto.
Una vez iniciado el contenedor, inicie una ventana terminal para el contenedor de Docker, por ejemplo, si usa docker desktop, elija Open in Terminal en las acciones.
Desde este terminal, descargue los modelos necesarios, por ejemplo, aquí se descarga el modelo phi3.
ollama pull phi3
No hay ninguna configuración local.
No hay ninguna configuración local.
Clone el repositorio que contiene el modelo ONNX que desea usar.
Antes de agregar la finalización del chat al kernel, deberá instalar los paquetes necesarios. A continuación se muestran los paquetes que deberá instalar para cada proveedor de servicios de IA.
Los modelos antrópicos están disponibles en la plataforma Amazon Bedrock. Para usar los modelos de Anthropic, deberá instalar el paquete del conector de Amazon.
Para otros proveedores de servicios de IA que admiten la API de finalización de chat de OpenAI (por ejemplo, LLM Studio), puede usar el conector de finalización del chat de OpenAI.
Ahora que ha instalado los paquetes necesarios, puede crear servicios de finalización de chat. A continuación se muestran las varias maneras de crear servicios de finalización de chat mediante kernel semántico.
Agregar directamente al kernel
Para agregar un servicio de finalización de chat, puede usar el código siguiente para agregarlo al proveedor de servicios interno del kernel.
using Microsoft.SemanticKernel;
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddAzureOpenAIChatCompletion(
deploymentName: "NAME_OF_YOUR_DEPLOYMENT",
apiKey: "YOUR_API_KEY",
endpoint: "YOUR_AZURE_ENDPOINT",
modelId: "gpt-4", // Optional name of the underlying model if the deployment name doesn't match the model name
serviceId: "YOUR_SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Kernel kernel = kernelBuilder.Build();
using Microsoft.SemanticKernel;
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOpenAIChatCompletion(
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
orgId: "YOUR_ORG_ID", // Optional
serviceId: "YOUR_SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización de chat mistral es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddMistralChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización del chat de Google es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Connectors.Google;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddGoogleAIGeminiChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
apiVersion: GoogleAIVersion.V1, // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización del chat de Hugging Face es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddHuggingFaceChatCompletion(
model: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización del chat de inferencia de Azure AI es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddAzureAIInferenceChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización de chat de Ollama es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOllamaChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. "phi3" if phi3 was downloaded as described above.
endpoint: new Uri("YOUR_ENDPOINT"), // E.g. "http://localhost:11434" if Ollama has been started in docker as described above.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización de chat de Bedrock, necesario para Anthropic, actualmente es experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización de chat de Bedrock actualmente es de carácter experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
Kernel kernel = kernelBuilder.Build();
Importante
El conector de finalización de chat ONNX está en fase experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOnnxRuntimeGenAIChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. phi-3
modelPath: "PATH_ON_DISK", // Path to the model on disk e.g. C:\Repos\huggingface\microsoft\Phi-3-mini-4k-instruct-onnx\cpu_and_mobile\cpu-int4-rtn-block-32
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
jsonSerializerOptions: customJsonSerializerOptions // Optional; for providing custom serialization settings for e.g. function argument / result serialization and parsing.
);
Kernel kernel = kernelBuilder.Build();
Para otros proveedores de servicios de IA que admiten la API de finalización de chat de OpenAI (por ejemplo, LLM Studio), puede usar el código siguiente para reutilizar el conector de finalización de chat de OpenAI existente.
Importante
El uso de puntos de conexión personalizados con el conector openAI es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0010.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0010
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOpenAIChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Uso de la inserción de dependencias
Si usa la inserción de dependencias, es probable que quiera agregar los servicios de IA directamente al proveedor de servicios. Esto resulta útil si desea crear singletons de los servicios de IA y reutilizarlos en kernels transitorios.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
builder.Services.AddAzureOpenAIChatCompletion(
deploymentName: "NAME_OF_YOUR_DEPLOYMENT",
apiKey: "YOUR_API_KEY",
endpoint: "YOUR_AZURE_ENDPOINT",
modelId: "gpt-4", // Optional name of the underlying model if the deployment name doesn't match the model name
serviceId: "YOUR_SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
builder.Services.AddOpenAIChatCompletion(
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
orgId: "YOUR_ORG_ID", // Optional; for OpenAI deployment
serviceId: "YOUR_SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización de chat mistral es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddMistralChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización del chat de Google es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Connectors.Google;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddGoogleAIGeminiChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
apiVersion: GoogleAIVersion.V1, // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización del chat de Hugging Face es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddHuggingFaceChatCompletion(
model: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización del chat de inferencia de Azure AI es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddAzureAIInferenceChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización de chat de Ollama es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddOllamaChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. "phi3" if phi3 was downloaded as described above.
endpoint: new Uri("YOUR_ENDPOINT"), // E.g. "http://localhost:11434" if Ollama has been started in docker as described above.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización de chat de Bedrock, necesario para Anthropic, actualmente es experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización de chat de Bedrock actualmente es de carácter experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
El conector de finalización de chat ONNX está en fase experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddOnnxRuntimeGenAIChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. phi-3
modelPath: "PATH_ON_DISK", // Path to the model on disk e.g. C:\Repos\huggingface\microsoft\Phi-3-mini-4k-instruct-onnx\cpu_and_mobile\cpu-int4-rtn-block-32
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
jsonSerializerOptions: customJsonSerializerOptions // Optional; for providing custom serialization settings for e.g. function argument / result serialization and parsing.
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Para otros proveedores de servicios de IA que admiten la API de finalización de chat de OpenAI (por ejemplo, LLM Studio), puede usar el código siguiente para reutilizar el conector de finalización de chat de OpenAI existente.
Importante
El uso de puntos de conexión personalizados con el conector openAI es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0010.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0010
builder.Services.AddOpenAIChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Creación de instancias independientes
Por último, puede crear instancias del servicio directamente para poder agregarlas a un kernel más adelante o usarlas directamente en el código sin insertarlas nunca en el kernel o en un proveedor de servicios.
using Microsoft.SemanticKernel.Connectors.AzureOpenAI;
AzureOpenAIChatCompletionService chatCompletionService = new (
deploymentName: "NAME_OF_YOUR_DEPLOYMENT",
apiKey: "YOUR_API_KEY",
endpoint: "YOUR_AZURE_ENDPOINT",
modelId: "gpt-4", // Optional name of the underlying model if the deployment name doesn't match the model name
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
using Microsoft.SemanticKernel.Connectors.OpenAI;
OpenAIChatCompletionService chatCompletionService = new (
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
organization: "YOUR_ORG_ID", // Optional
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Importante
El conector de finalización de chat mistral es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.MistralAI;
#pragma warning disable SKEXP0070
MistralAIChatCompletionService chatCompletionService = new (
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Importante
El conector de finalización del chat de Google es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Google;
#pragma warning disable SKEXP0070
GoogleAIGeminiChatCompletionService chatCompletionService = new (
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
apiVersion: GoogleAIVersion.V1, // Optional
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Importante
El conector de finalización del chat de Hugging Face es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.HuggingFace;
#pragma warning disable SKEXP0070
HuggingFaceChatCompletionService chatCompletionService = new (
model: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT") // Optional
);
Importante
El conector de finalización del chat de inferencia de Azure AI es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.AzureAIInference;
#pragma warning disable SKEXP0070
AzureAIInferenceChatCompletionService chatCompletionService = new (
modelId: "YOUR_MODEL_ID",
apiKey: "YOUR_API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Importante
El conector de finalización de chat de Ollama es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.ChatCompletion;
using OllamaSharp;
#pragma warning disable SKEXP0070
using var ollamaClient = new OllamaApiClient(
uriString: "YOUR_ENDPOINT" // E.g. "http://localhost:11434" if Ollama has been started in docker as described above.
defaultModel: "NAME_OF_MODEL" // E.g. "phi3" if phi3 was downloaded as described above.
);
IChatCompletionService chatCompletionService = ollamaClient.AsChatCompletionService();
Importante
El conector de finalización de chat de Bedrock, necesario para Anthropic, actualmente es experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Amazon;
#pragma warning disable SKEXP0070
BedrockChatCompletionService chatCompletionService = new BedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
);
Importante
El conector de finalización de chat de Bedrock actualmente es de carácter experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Amazon;
#pragma warning disable SKEXP0070
BedrockChatCompletionService chatCompletionService = new BedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
);
Importante
El conector de finalización de chat ONNX está en fase experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Onnx;
#pragma warning disable SKEXP0070
OnnxRuntimeGenAIChatCompletionService chatCompletionService = new OnnxRuntimeGenAIChatCompletionService(
modelId: "NAME_OF_MODEL", // E.g. phi-3
modelPath: "PATH_ON_DISK", // Path to the model on disk e.g. C:\Repos\huggingface\microsoft\Phi-3-mini-4k-instruct-onnx\cpu_and_mobile\cpu-int4-rtn-block-32
jsonSerializerOptions: customJsonSerializerOptions // Optional; for providing custom serialization settings for e.g. function argument / result serialization and parsing.
);
Para otros proveedores de servicios de IA que admiten la API de finalización de chat de OpenAI (por ejemplo, LLM Studio), puede usar el código siguiente para reutilizar el conector de finalización de chat de OpenAI existente.
Importante
El uso de puntos de conexión personalizados con el conector openAI es actualmente experimental. Para usarlo, deberá agregar #pragma warning disable SKEXP0010.
using Microsoft.SemanticKernel.Connectors.OpenAI;
#pragma warning disable SKEXP0010
OpenAIChatCompletionService chatCompletionService = new (
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
organization: "YOUR_ORG_ID", // Optional
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Para crear un servicio de finalización de chat, debe instalar e importar los módulos necesarios y crear una instancia del servicio. A continuación se muestran los pasos para instalar y crear un servicio de finalización de chat para cada proveedor de servicios de IA.
El paquete kernel semántico incluye todos los paquetes necesarios para usar Azure OpenAI. No se requieren paquetes adicionales para usar Azure OpenAI.
El paquete kernel semántico incluye todos los paquetes necesarios para usar OpenAI. No hay paquetes adicionales necesarios para usar OpenAI.
pip install semantic-kernel[azure]
pip install semantic-kernel[anthropic]
pip install semantic-kernel[aws]
pip install semantic-kernel[google]
pip install semantic-kernel[google]
pip install semantic-kernel[mistralai]
pip install semantic-kernel[ollama]
pip install semantic-kernel[onnx]
Creación de un servicio de finalización de chat
Propina
Hay tres métodos para proporcionar la información necesaria a los servicios de inteligencia artificial. Puede proporcionar la información directamente a través del constructor, establecer las variables de entorno necesarias o crear un archivo .env en el directorio del proyecto que contenga las variables de entorno. Puede visitar esta página para buscar todas las variables de entorno necesarias para cada proveedor de servicios de IA: https://github.com/microsoft/semantic-kernel/blob/main/python/samples/concepts/setup/ALL_SETTINGS.md
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
chat_completion_service = AzureChatCompletion(
deployment_name="my-deployment",
api_key="my-api-key",
endpoint="my-api-endpoint", # Used to point to your service
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
# You can do the following if you have set the necessary environment variables or created a .env file
chat_completion_service = AzureChatCompletion(service_id="my-service-id")
Nota:
El servicio AzureChatCompletion también admite autenticación de Microsoft Entra. Si no proporciona una clave de API, el servicio intentará autenticarse mediante el token entra.
from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion
chat_completion_service = OpenAIChatCompletion(
ai_model_id="my-deployment",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
# You can do the following if you have set the necessary environment variables or created a .env file
chat_completion_service = OpenAIChatCompletion(service_id="my-service-id")
from semantic_kernel.connectors.ai.azure_ai_inference import AzureAIInferenceChatCompletion
chat_completion_service = AzureAIInferenceChatCompletion(
ai_model_id="my-deployment",
api_key="my-api-key",
endpoint="my-api-endpoint", # Used to point to your service
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
# You can do the following if you have set the necessary environment variables or created a .env file
chat_completion_service = AzureAIInferenceChatCompletion(ai_model_id="my-deployment", service_id="my-service-id")
# You can also use an Azure OpenAI deployment with the Azure AI Inference service
from azure.ai.inference.aio import ChatCompletionsClient
from azure.identity.aio import DefaultAzureCredential
chat_completion_service = AzureAIInferenceChatCompletion(
ai_model_id="my-deployment",
client=ChatCompletionsClient(
endpoint=f"{str(endpoint).strip('/')}/openai/deployments/{deployment_name}",
credential=DefaultAzureCredential(),
credential_scopes=["https://cognitiveservices.azure.com/.default"],
),
)
Nota:
El servicio AzureAIInferenceChatCompletion también admite autenticación de Microsoft Entra. Si no proporciona una clave de API, el servicio intentará autenticarse mediante el token entra.
from semantic_kernel.connectors.ai.anthropic import AnthropicChatCompletion
chat_completion_service = AnthropicChatCompletion(
chat_model_id="model-id",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
from semantic_kernel.connectors.ai.bedrock import BedrockChatCompletion
chat_completion_service = BedrockChatCompletion(
model_id="model-id",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Nota:
Amazon Bedrock no acepta una clave de API. Siga esta guía de para configurar el entorno.
from semantic_kernel.connectors.ai.google.google_ai import GoogleAIChatCompletion
chat_completion_service = GoogleAIChatCompletion(
gemini_model_id="model-id",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Propina
Los usuarios pueden acceder a los modelos Gemini de Google a través de Google AI Studio o la plataforma Google Vertex. Siga esta guía de para configurar el entorno.
from semantic_kernel.connectors.ai.google.vertex_ai import VertexAIChatCompletion
chat_completion_service = VertexAIChatCompletion(
project_id="my-project-id",
gemini_model_id="model-id",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Propina
Los usuarios pueden acceder a los modelos Gemini de Google a través de Google AI Studio o la plataforma Google Vertex. Siga esta guía de para configurar el entorno.
from semantic_kernel.connectors.ai.mistral_ai import MistralAIChatCompletion
chat_completion_service = MistralAIChatCompletion(
ai_model_id="model-id",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
from semantic_kernel.connectors.ai.ollama import OllamaChatCompletion
chat_completion_service = OllamaChatCompletion(
ai_model_id="model-id",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Propina
Para obtener más información sobre Ollama y descargar el software necesario, visite aquí.
from semantic_kernel.connectors.ai.onnx import OnnxGenAIChatCompletion
chat_completion_service = OnnxGenAIChatCompletion(
template="phi3v",
ai_model_path="model-path",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Puede empezar a usar el servicio de finalización inmediatamente o agregar el servicio de finalización de chat a un kernel. Puede usar el código siguiente para agregar un servicio al kernel.
from semantic_kernel import Kernel
# Initialize the kernel
kernel = Kernel()
# Add the chat completion service created above to the kernel
kernel.add_service(chat_completion_service)
Puede crear instancias del servicio de finalización de chat directamente y agregarlas a un kernel o usarlas directamente en el código sin insertarlas en el kernel. En el código siguiente se muestra cómo crear un servicio de finalización de chat y agregarlo al kernel.
import com.azure.ai.openai.OpenAIAsyncClient;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.microsoft.semantickernel.Kernel;
import com.microsoft.semantickernel.services.chatcompletion.ChatCompletionService;
// Create the client
OpenAIAsyncClient client = new OpenAIClientBuilder()
.credential(azureOpenAIClientCredentials)
.endpoint(azureOpenAIClientEndpoint)
.buildAsyncClient();
// Create the chat completion service
ChatCompletionService openAIChatCompletion = OpenAIChatCompletion.builder()
.withOpenAIAsyncClient(client)
.withModelId(modelId)
.build();
// Initialize the kernel
Kernel kernel = Kernel.builder()
.withAIService(ChatCompletionService.class, openAIChatCompletion)
.build();
import com.azure.ai.openai.OpenAIAsyncClient;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.microsoft.semantickernel.Kernel;
import com.microsoft.semantickernel.services.chatcompletion.ChatCompletionService;
// Create the client
OpenAIAsyncClient client = new OpenAIClientBuilder()
.credential(openAIClientCredentials)
.buildAsyncClient();
// Create the chat completion service
ChatCompletionService openAIChatCompletion = OpenAIChatCompletion.builder()
.withOpenAIAsyncClient(client)
.withModelId(modelId)
.build();
// Initialize the kernel
Kernel kernel = Kernel.builder()
.withAIService(ChatCompletionService.class, openAIChatCompletion)
.build();
Recuperación de servicios de finalización de chat
Una vez que haya agregado servicios de finalización de chat al kernel, puede recuperarlos mediante el método get service. A continuación se muestra un ejemplo de cómo recuperar un servicio de finalización de chat del kernel.
var chatCompletionService = kernel.GetRequiredService<IChatCompletionService>();
from semantic_kernel.connectors.ai.chat_completion_client_base import ChatCompletionClientBase
# Retrieve the chat completion service by type
chat_completion_service = kernel.get_service(type=ChatCompletionClientBase)
# Retrieve the chat completion service by id
chat_completion_service = kernel.get_service(service_id="my-service-id")
# Retrieve the default inference settings
execution_settings = kernel.get_prompt_execution_settings_from_service_id("my-service-id")
No es necesario agregar el servicio de finalización de chat al kernel si no es necesario usar otros servicios en el kernel. Puedes usar el servicio de finalización de chat directamente en tu código.
Uso de servicios de finalización de chat
Ahora que tiene un servicio de finalización de chat, puede usarlo para generar respuestas de un agente de IA. Hay dos maneras principales de usar un servicio de finalización de chat:
No transmisión: Esperas a que el servicio genere una respuesta completa antes de devolverla al usuario.
streaming: se generan fragmentos individuales de la respuesta y se devuelven al usuario a medida que se crean.
Antes de empezar, deberá crear manualmente una instancia de configuración de ejecución para usar el servicio de finalización de chat si no registró el servicio con el kernel.
from semantic_kernel.connectors.ai.open_ai import OpenAIChatPromptExecutionSettings
execution_settings = OpenAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.open_ai import OpenAIChatPromptExecutionSettings
execution_settings = OpenAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.azure_ai_inference import AzureAIInferenceChatPromptExecutionSettings
execution_settings = AzureAIInferenceChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.anthropic import AnthropicChatPromptExecutionSettings
execution_settings = AnthropicChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.bedrock import BedrockChatPromptExecutionSettings
execution_settings = BedrockChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.google.google_ai import GoogleAIChatPromptExecutionSettings
execution_settings = GoogleAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.google.vertex_ai import VertexAIChatPromptExecutionSettings
execution_settings = VertexAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.mistral_ai import MistralAIChatPromptExecutionSettings
execution_settings = MistralAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.ollama import OllamaChatPromptExecutionSettings
execution_settings = OllamaChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.onnx import OnnxGenAIPromptExecutionSettings
execution_settings = OnnxGenAIPromptExecutionSettings()
Propina
Para ver lo que puede configurar en las opciones de ejecución, puede comprobar la definición de clase en el código fuente de o consultar la documentación de la API de .
A continuación se muestran las dos maneras de usar un servicio de finalización de chat para generar respuestas.
Finalización de chat sin streaming
Para usar la finalización del chat sin streaming, puede usar el código siguiente para generar una respuesta del agente de IA.
ChatHistory history = [];
history.AddUserMessage("Hello, how are you?");
var response = await chatCompletionService.GetChatMessageContentAsync(
history,
kernel: kernel
);
chat_history = ChatHistory()
chat_history.add_user_message("Hello, how are you?")
response = await chat_completion.get_chat_message_content(
chat_history=history,
settings=execution_settings,
)
ChatHistory history = new ChatHistory();
history.addUserMessage("Hello, how are you?");
InvocationContext optionalInvocationContext = null;
List<ChatMessageContent<?>> response = chatCompletionService.getChatMessageContentsAsync(
history,
kernel,
optionalInvocationContext
);
Finalización del chat en streaming
Para usar la finalización del chat en streaming, puede usar el código siguiente para generar una respuesta del agente de IA.
ChatHistory history = [];
history.AddUserMessage("Hello, how are you?");
var response = chatCompletionService.GetStreamingChatMessageContentsAsync(
chatHistory: history,
kernel: kernel
);
await foreach (var chunk in response)
{
Console.Write(chunk);
}
chat_history = ChatHistory()
chat_history.add_user_message("Hello, how are you?")
response = chat_completion.get_streaming_chat_message_content(
chat_history=history,
settings=execution_settings,
)
async for chunk in response:
print(chunk, end="")
Nota:
El kernel semántico para Java no admite el modelo de respuesta de streaming.
Pasos siguientes
Ahora que ha agregado servicios de finalización de chat al proyecto de kernel semántico, puede empezar a crear conversaciones con el agente de IA. Para más información sobre el uso de un servicio de finalización de chat, consulte los artículos siguientes: