Compartir a través de


Biblioteca cliente de generación de perfiles de cáncer de Azure Cognitive Services Health Insights para Python, versión 1.0.0b1

Health Insights es un servicio de inteligencia artificial aplicado de Azure creado con Azure Cognitive Services Framework, que aprovecha varios servicios de Cognitive Services, Healthcare API y otros recursos de Azure.

El modelo de generación de perfiles de cáncer recibe registros clínicos de pacientes oncológicos y produce ensayo de cáncer, como categorías de TNM de fase clínica y categorías TNM de fase patológica, así como histología del tumor.

Código | fuente Paquete (PyPI) | Documentación | de referencia de API | Documentación del productoMuestras

Introducción

Requisitos previos

  • Se requiere Python 3.7 o posterior para usar este paquete.
  • Necesita una suscripción de Azure para usar este paquete.
  • Una instancia existente de Cognitive Services Health Insights.

Instalar el paquete

pip install azure-healthinsights-cancerprofiling

En esta tabla se muestra la relación entre las versiones del SDK y las versiones de la API admitidas del servicio:

Versión del SDK Versión de la API admitidas del servicio
1.0.0b1 2023-03-01-preview

Autenticar el cliente

Obtención del punto de conexión

Puede encontrar el punto de conexión del recurso del servicio Health Insights mediante Azure Portal o la CLI de Azure.

# Get the endpoint for the Health Insights service resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"

Obtención de la clave de API

Puede obtener la clave de API del recurso del servicio Health Insights en Azure Portal. Como alternativa, puede usar el fragmento de código de la CLI de Azure siguiente para obtener la clave de API del recurso.

az cognitiveservices account keys list --resource-group <your-resource-group-name> --name <your-resource-name>

Creación de un cancerProfilingClient con una credencial de clave de API

Una vez que tenga el valor de la clave de API, puede pasarlo como una cadena a una instancia de AzureKeyCredential. Use la clave como parámetro de credencial para autenticar el cliente:

import os
from azure.core.credentials import AzureKeyCredential
from azure.healthinsights.cancerprofiling.aio import CancerProfilingClient

KEY = os.environ["HEALTHINSIGHTS_KEY"]
ENDPOINT = os.environ["HEALTHINSIGHTS_ENDPOINT"]

cancer_profiling_client = CancerProfilingClient(endpoint=ENDPOINT, credential=AzureKeyCredential(KEY))

Operaciones de Long-Running

Las operaciones de ejecución prolongada son operaciones que constan de una solicitud inicial enviada al servicio para iniciar una operación, seguida de sondear el servicio a intervalos para determinar si la operación se ha completado o ha producido un error y, si se ha realizado correctamente, para obtener el resultado.

Los métodos que admiten el análisis sanitario, el análisis de texto personalizado o varios análisis se modelan como operaciones de larga duración. El cliente expone un begin_<method-name> método que devuelve un objeto poller. Los autores de llamadas deben esperar a que se complete la operación llamando result() al objeto de sondeo devuelto desde el begin_<method-name> método . A continuación se proporcionan fragmentos de código de ejemplo para ilustrar el uso de operaciones de larga duración .

Conceptos clave

El modelo de generación de perfiles de cáncer permite deducir atributos de cáncer como el sitio tumor, la histología, las categorías de TNM de fase clínica y las categorías de TNM de fase patológica de documentos clínicos no estructurados.

Ejemplos

En la siguiente sección se proporcionan varios fragmentos de código que abarcan algunas de las tareas más comunes del servicio Health Insights - Cancer Profiling, entre las que se incluyen:

Generación de perfiles de cáncer

Inferir atributos clave del cáncer, como el sitio tumor, la histología, las categorías de TNM de fase clínica y las categorías de TNM de fase patológica de los documentos clínicos no estructurados de un paciente.

import asyncio
import os
import datetime
from azure.core.credentials import AzureKeyCredential
from azure.healthinsights.cancerprofiling.aio import CancerProfilingClient
from azure.healthinsights.cancerprofiling import models

KEY = os.environ["HEALTHINSIGHTS_KEY"]
ENDPOINT = os.environ["HEALTHINSIGHTS_ENDPOINT"]

# Create an Onco Phenotype client
# <client>
cancer_profiling_client = CancerProfilingClient(endpoint=ENDPOINT,
                                                credential=AzureKeyCredential(KEY))
# </client>

# Construct patient
# <PatientConstructor>
patient_info = models.PatientInfo(sex=models.PatientInfoSex.FEMALE, birth_date=datetime.date(1979, 10, 8))
patient1 = models.PatientRecord(id="patient_id", info=patient_info)
# </PatientConstructor>

# Add document list
# <DocumentList>
doc_content1 = """
            15.8.2021
            Jane Doe 091175-8967
            42 year old female, married with 3 children, works as a nurse
            Healthy, no medications taken on a regular basis.
            PMHx is significant for migraines with aura, uses Mirena for contraception.
            Smoking history of 10 pack years (has stopped and relapsed several times).
            She is in c/o 2 weeks of productive cough and shortness of breath.
            She has a fever of 37.8 and general weakness.
            Denies night sweats and rash. She denies symptoms of rhinosinusitis, asthma, and heartburn.
            On PE:
            GENERAL: mild pallor, no cyanosis. Regular breathing rate.
            LUNGS: decreased breath sounds on the base of the right lung. Vesicular breathing. 
                No crackles, rales, and wheezes. Resonant percussion.
            PLAN:
            Will be referred for a chest x-ray.
            ======================================
            CXR showed mild nonspecific opacities in right lung base.
            PLAN:
            Findings are suggestive of a working diagnosis of pneumonia. The patient is referred to a
            follow-up CXR in 2 weeks."""

patient_document1 = models.PatientDocument(type=models.DocumentType.NOTE,
                                           id="doc1",
                                           content=models.DocumentContent(
                                               source_type=models.DocumentContentSourceType.INLINE,
                                               value=doc_content1),
                                           clinical_type=models.ClinicalDocumentType.IMAGING,
                                           language="en",
                                           created_date_time=datetime.datetime(2021, 8, 15))

doc_content2 = """
            Oncology Clinic
            20.10.2021
            Jane Doe 091175-8967
            42-year-old healthy female who works as a nurse in the ER of this hospital.
            First menstruation at 11 years old. First delivery- 27 years old. She has 3 children.
            Didn't breastfeed.
            Contraception- Mirena.
            Smoking- 10 pack years.
            Mother- Belarusian. Father- Georgian. 
            About 3 months prior to admission, she stated she had SOB and was febrile.
            She did a CXR as an outpatient which showed a finding in the base of the right lung-
            possibly an infiltrate.
            She was treated with antibiotics with partial response.
            6 weeks later a repeat CXR was performed- a few solid dense findings in the right lung.
            Therefore, she was referred for a PET-CT which demonstrated increased uptake in the right
            breast, lymph nodes on the right a few areas in the lungs and liver.
            On biopsy from the lesion in the right breast- triple negative adenocarcinoma. Genetic
            testing has not been done thus far.
            Genetic counseling- the patient denies a family history of breast, ovary, uterus,
            and prostate cancer. Her mother has chronic lymphocytic leukemia (CLL).
            She is planned to undergo genetic tests because the aggressive course of the disease,
            and her young age.
            Impression:
            Stage 4 triple negative breast adenocarcinoma.
            Could benefit from biological therapy.
            Different treatment options were explained- the patient wants to get a second opinion."""

patient_document2 = models.PatientDocument(type=models.DocumentType.NOTE,
                                           id="doc2",
                                           content=models.DocumentContent(
                                               source_type=models.DocumentContentSourceType.INLINE,
                                               value=doc_content2),
                                           clinical_type=models.ClinicalDocumentType.PATHOLOGY,
                                           language="en",
                                           created_date_time=datetime.datetime(2021, 10, 20))

doc_content3 = """
            PATHOLOGY REPORT
                                    Clinical Information
            Ultrasound-guided biopsy; A. 18 mm mass; most likely diagnosis based on imaging:  IDC
                                        Diagnosis
            A.  BREAST, LEFT AT 2:00 4 CM FN; ULTRASOUND-GUIDED NEEDLE CORE BIOPSIES:
            - Invasive carcinoma of no special type (invasive ductal carcinoma), grade 1
            Nottingham histologic grade:  1/3 (tubules 2; nuclear grade 2; mitotic rate 1;
            total score; 5/9)
            Fragments involved by invasive carcinoma:  2
            Largest measurement of invasive carcinoma on a single fragment:  7 mm
            Ductal carcinoma in situ (DCIS):  Present
            Architectural pattern:  Cribriform
            Nuclear grade:  2-
                            -intermediate
            Necrosis:  Not identified
            Fragments involved by DCIS:  1
            Largest measurement of DCIS on a single fragment:  Span 2 mm
            Microcalcifications:  Present in benign breast tissue and invasive carcinoma
            Blocks with invasive carcinoma:  A1
            Special studies: Pending"""

patient_document3 = models.PatientDocument(type=models.DocumentType.NOTE,
                                           id="doc3",
                                           content=models.DocumentContent(
                                               source_type=models.DocumentContentSourceType.INLINE,
                                               value=doc_content3),
                                           clinical_type=models.ClinicalDocumentType.PATHOLOGY,
                                           language="en",
                                           created_date_time=datetime.datetime(2022, 1, 1))

patient_doc_list = [patient_document1, patient_document2, patient_document3]
patient1.data = patient_doc_list
# <\DocumentList>

# Set configuration to include evidence for the cancer staging inferences
configuration = models.OncoPhenotypeModelConfiguration(include_evidence=True)

# Construct the request with the patient and configuration
cancer_profiling_data = models.OncoPhenotypeData(patients=[patient1], configuration=configuration)

poller = await cancer_profiling_client.begin_infer_cancer_profile(cancer_profiling_data)
cancer_profiling_result = await poller.result()
if cancer_profiling_result.status == models.JobStatus.SUCCEEDED:
    results = cancer_profiling_result.results
    for patient_result in results.patients:
        print(f"\n==== Inferences of Patient {patient_result.id} ====")
        for inference in patient_result.inferences:
            print(
                f"\n=== Clinical Type: {str(inference.type)} Value: {inference.value}\
                    ConfidenceScore: {inference.confidence_score} ===")
            for evidence in inference.evidence:
                data_evidence = evidence.patient_data_evidence
                print(
                    f"Evidence {data_evidence.id} {data_evidence.offset} {data_evidence.length}\
                        {data_evidence.text}")
else:
    errors = cancer_profiling_result.errors
    if errors is not None:
        for error in errors:
            print(f"{error.code} : {error.message}")

Solución de problemas

General

La biblioteca cliente de generación de perfiles de cáncer de Health Insights generará excepciones definidas en Azure Core.

Registro

Esta biblioteca usa la biblioteca de registro estándar para el registro.

La información básica sobre las sesiones HTTP (direcciones URL, encabezados, etc.) se registra en INFO el nivel .

El registro de nivel detallado DEBUG , incluidos los cuerpos de solicitud/respuesta y los encabezados no aprobados , se puede habilitar en el cliente o por operación con el argumento de palabra logging_enable clave.

Consulte la documentación completa del registro del SDK con ejemplos aquí.

Configuración opcional

Los argumentos de palabra clave opcionales se pueden pasar en el nivel de cliente y por operación. En la documentación de referencia de azure-core se describen las configuraciones disponibles para los reintentos, el registro, los protocolos de transporte, etc.

Pasos siguientes

Documentación adicional

Para obtener documentación más amplia sobre la generación de perfiles de cáncer de Azure Health Insights, consulte la documentación de generación de perfiles de cáncer en docs.microsoft.com.

Contribuciones

Este proyecto agradece las contribuciones y sugerencias. La mayoría de las contribuciones requieren que acepte un Contrato de licencia para el colaborador (CLA) que declara que tiene el derecho a concedernos y nos concede los derechos para usar su contribución. Para más detalles, visite https://cla.microsoft.com.

Cuando se envía una solicitud de incorporación de cambios, un bot de CLA determinará de forma automática si tiene que aportar un CLA y completar la PR adecuadamente (por ejemplo, la etiqueta, el comentario). Solo siga las instrucciones que le dará el bot. Solo será necesario que lo haga una vez en todos los repositorios con nuestro CLA.

Este proyecto ha adoptado el Código de conducta de Microsoft Open Source. Para obtener más información, vea las preguntas más frecuentes sobre el código de conducta o póngase en contacto con opencode@microsoft.com si tiene preguntas o comentarios.