sinh
devuelve el seno hiperbólico de un número complejo.
template<class Type>
complex<Type> sinh(
const complex<Type>& _ComplexNum
);
Parámetros
- _ComplexNum
el número complejo cuyo se está determinando seno hiperbólico.
Valor devuelto
El número complejo que es el seno hiperbólico del número complejo de entrada.
Comentarios
identidades que definen los senos hiperbólicos complejos:
sinh (z) = (1/2) * (exp (z) – exp (-z))
sinh (z) = sinh (a + BI) = sinh (a) cos (b) + sin de icosh(a) (b)
Ejemplo
// complex_sinh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of sine of a complex number c1
complex <double> c2 = sinh ( c1 );
cout << "Complex number c2 = sinh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic sines of the standard angles in
// the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( sinh ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( sinh ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( sinh ( vc3) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( sinh ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( sinh ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( sinh ( vc6 ) );
cout << "The complex components sinh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Requisitos
encabezado: <complejo>
espacio de nombres: std