Cómo: Implementar un particionador con un número estático de particiones
En el siguiente ejemplo se muestra una manera de implementar un particionador personalizado simple para PLINQ que realiza la creación de particiones estáticas. Dado que el particionador no admite las particiones dinámicas, no se puede usar de Parallel.ForEach. Este particionador determinado podría proporcionar más velocidad que el particionador del intervalo predeterminado para los orígenes de datos en los que cada elemento requiere una cantidad creciente de tiempo de proceso.
Ejemplo
// A static range partitioner for sources that require
// a linear increase in processing time for each succeeding element.
// The range sizes are calculated based on the rate of increase
// with the first partition getting the most elements and the
// last partition getting the least.
class MyPartitioner : Partitioner<int>
{
int[] source;
double rateOfIncrease = 0;
public MyPartitioner(int[] source, double rate)
{
this.source = source;
rateOfIncrease = rate;
}
public override IEnumerable<int> GetDynamicPartitions()
{
throw new NotImplementedException();
}
// Not consumable from Parallel.ForEach.
public override bool SupportsDynamicPartitions
{
get
{
return false;
}
}
public override IList<IEnumerator<int>> GetPartitions(int partitionCount)
{
List<IEnumerator<int>> _list = new List<IEnumerator<int>>();
int end = 0;
int start = 0;
int[] nums = CalculatePartitions(partitionCount, source.Length);
for (int i = 0; i < nums.Length; i++)
{
start = nums[i];
if (i < nums.Length - 1)
end = nums[i + 1];
else
end = source.Length;
_list.Add(GetItemsForPartition(start, end));
// For demonstratation.
Console.WriteLine("start = {0} b (end) = {1}", start, end);
}
return (IList<IEnumerator<int>>)_list;
}
/*
*
*
* B
// Model increasing workloads as a right triangle / |
divided into equal areas along vertical lines. / | |
Each partition is taller and skinnier / | |
than the last. / | | |
/ | | |
/ | | |
/ | | | |
/ | | | |
A /______|____|___|__| C
*/
private int[] CalculatePartitions(int partitionCount, int sourceLength)
{
// Corresponds to the opposite side of angle A, which corresponds
// to an index into the source array.
int[] partitionLimits = new int[partitionCount];
partitionLimits[0] = 0;
// Represent total work as rectangle of source length times "most expensive element"
// Note: RateOfIncrease can be factored out of equation.
double totalWork = sourceLength * (sourceLength * rateOfIncrease);
// Divide by two to get the triangle whose slope goes from zero on the left to "most"
// on the right. Then divide by number of partitions to get area of each partition.
totalWork /= 2;
double partitionArea = totalWork / partitionCount;
// Draw the next partitionLimit on the vertical coordinate that gives
// an area of partitionArea * currentPartition.
for (int i = 1; i < partitionLimits.Length; i++)
{
double area = partitionArea * i;
// Solve for base given the area and the slope of the hypotenuse.
partitionLimits[i] = (int)Math.Floor(Math.Sqrt((2 * area) / rateOfIncrease));
}
return partitionLimits;
}
IEnumerator<int> GetItemsForPartition(int start, int end)
{
// For demonstration purpsoes. Each thread receives its own enumerator.
Console.WriteLine("called on thread {0}", Thread.CurrentThread.ManagedThreadId);
for (int i = start; i < end; i++)
yield return source[i];
}
}
class Consumer
{
public static void Main2()
{
var source = Enumerable.Range(0, 10000).ToArray();
Stopwatch sw = Stopwatch.StartNew();
MyPartitioner partitioner = new MyPartitioner(source, .5);
var query = from n in partitioner.AsParallel()
select ProcessData(n);
foreach (var v in query) { }
Console.WriteLine("Processing time with custom partitioner {0}", sw.ElapsedMilliseconds);
var source2 = Enumerable.Range(0, 10000).ToArray();
sw = Stopwatch.StartNew();
var query2 = from n in source2.AsParallel()
select ProcessData(n);
foreach (var v in query2) { }
Console.WriteLine("Processing time with default partitioner {0}", sw.ElapsedMilliseconds);
}
// Consistent processing time for measurement purposes.
static int ProcessData(int i)
{
Thread.SpinWait(i * 1000);
return i;
}
}
Las particiones de este ejemplo están basadas en la hipótesis de un aumento lineal del tiempo de proceso por cada elemento. En la práctica, podría ser difícil predecir los tiempos de proceso de esta manera. Si está utilizando un particionador estático con un origen de datos concreto, puede optimizar la fórmula de creación de particiones del origen, agregar lógica de equilibrio de carga o emplear un enfoque de creación de particiones de los fragmentos, como se muestra en Cómo: Implementar las particiones dinámicas.