Compartir a través de


Referencia de función completa de BrainScript

En esta sección se proporciona información sobre las funciones integradas de BrainScript.

Las declaraciones de todas las funciones integradas se pueden encontrar en el CNTK.core.bs situado junto al binario de CNTK.

Las operaciones y capas primitivas se declaran en el espacio de nombres global. Las operaciones adicionales se declaran en espacios de nombres y se proporcionarán con el prefijo correspondiente (por ejemplo, BS.RNN.LSTMP).

Capas

Creación de capas

Funciones de activación

Operaciones en forma de elemento, unaria

Operaciones en forma de elemento, binarios

Operaciones de elemento, ternario

Operaciones de convolución y productos de matriz

  • Times(A, B, outputRank=1)
    A * B
  • TransposeTimes(A, B, outputRank=1)
  • Convolution(weights, x, kernelShape, mapDims=(0), stride=(1), sharing=(true), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW', maxTempMemSizeInSamples=0)
  • Pooling(x, poolKind/*'max'|'average'*/, kernelShape, stride=(1), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW')
  • ROIPooling(x, rois, roiOutputShape, spatialScale=1.0/16.0)

Parámetros y constantes que se pueden aprender

  • ParameterTensor {shape, learningRateMultiplier=1.0, init='uniform'/*|gaussian*/, initValueScale=1.0, initValue=0.0, randomSeed=-1, initFromFilePath=''}
  • Constant {scalarValue, rows = 1, cols = 1}
  • BS.Constants.Zero, BS.Constants.One
    BS.Constants.True, BS.Constants.False, BS.Constants.None
  • BS.Constants.OnesTensor (shape)
  • BS.Constants.ZeroSequenceLike (x)

Entradas

  • Input (shape, dynamicAxis='', sparse=false, tag='feature')
  • DynamicAxis{}
  • EnvironmentInput (propertyName)
    Mean (x), InvStdDev (x)

Funciones y métricas de pérdida

Reducciones

Operaciones de entrenamiento

  • BatchNormalization (input, scale, bias, runMean, runInvStdDev, spatial, normalizationTimeConstant = 0, blendTimeConstant = 0, epsilon = 0.00001, useCntkEngine = true, imageLayout='CHW')
  • Dropout (x)
  • Stabilize (x, enabled=true)
    StabilizeElements (x, inputDim=x.dim, enabled=true)
  • CosDistanceWithNegativeSamples (x, y, numShifts, numNegSamples)

Volver a dar forma a las operaciones

  • CNTK2.Reshape (x, shape, beginAxis=0, endAxis=0)
    ReshapeDimension (x, axis, shape) = CNTK2.Reshape (x, shape, beginAxis=axis, endAxis=axis + 1)
    FlattenDimensions (x, axis, num) = CNTK2.Reshape (x, 0, beginAxis=axis, endAxis=axis + num)
    SplitDimension (x, axis, N) = ReshapeDimension (x, axis, 0:N)
  • Slice (beginIndex, endIndex, input, axis=1)
    BS.Sequences.First (x) = Slice (0, 1, x, axis=-1)
    BS.Sequences.Last (x) = Slice (-1, 0, x, axis=-1)
  • Splice (inputs, axis=1)
  • TransposeDimensions (x, axis1, axis2)
    Transpose (x) = TransposeDimensions (x, 1, 2)
  • BS.Sequences.BroadcastSequenceAs (type, data1)
  • BS.Sequences.Gather (where, x)
    BS.Sequences.Scatter (where, y)
    BS.Sequences.IsFirst (x)
    BS.Sequences.IsLast (x)

Repetición

  • OptimizedRNNStack(weights, input, hiddenDims, numLayers=1, bidirectional=false, recurrentOp='lstm')
  • BS.Loop.Previous (x, timeStep=1, defaultHiddenActivation=0)
    PastValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Previous (0, shape, ...)
  • BS.Loop.Next (x, timeStep=1, defaultHiddenActivation=0)
    FutureValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Next (0, shape, ...)
  • LSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, aux=BS.Constants.None, auxDim=aux.shape, prevState, enableSelfStabilization=false)
  • BS.Boolean.Toggle (clk, initialValue=BS.Constants.False)
  • BS.RNNs.RecurrentLSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, previousHook=BS.RNNs.PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputDim=0, layerIndex=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.shape, previousHook=PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputShape=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentBirectionalLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.dim, previousHook=PreviousHC, nextHook=NextHC, enableSelfStabilization=false)

Compatibilidad con secuencia a secuencia

  • BS.Seq2Seq.CreateAugmentWithFixedWindowAttentionHook (attentionDim, attentionSpan, decoderDynamicAxis, encoderOutput, enableSelfStabilization=false)
  • BS.Seq2Seq.GreedySequenceDecoderFrom (modelAsTrained)
  • BS.Seq2Seq.BeamSearchSequenceDecoderFrom (modelAsTrained, beamDepth)

Operaciones de propósito especial

  • ClassBasedCrossEntropyWithSoftmax (labelClassDescriptorVectorSequence, mainInputInfo, mainWeight, classLogProbsBeforeSoftmax)

Edición de modelos

Otro

  • Fail (what)
  • IsSameObject (a, b)
  • Trace (node, say='', logFrequency=traceFrequency, logFirst=10, logGradientToo=false, onlyUpToRow=100000000, onlyUpToT=100000000, format=[])

Obsolescente

  • ErrorPrediction (labels, nonNormalizedLogClassPosteriors)
  • ColumnElementTimes (...) = ElementTimes (...)
  • DiagTimes (...) = ElementTimes (...)
  • LearnableParameter(...) = Parameter(...)
  • LookupTable (embeddingMatrix, inputTensor)
  • RowRepeat (input, numRepeats)
  • RowSlice (beginIndex, numRows, input) = Slice(beginIndex, beginIndex + numRows, input, axis = 1)
  • RowStack (inputs)
  • RowElementTimes (...) = ElementTimes (...)
  • Scale (...) = ElementTimes (...)
  • ConstantTensor (scalarVal, shape)
    Parameter (outputDim, inputDim, ...) = ParameterTensor ((outputDim:input), ...)
    WeightParam (outputDim, inputDim) = Parameter (outputDim, inputDim, init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    DiagWeightParam (outputDim) = ParameterTensor ((outputDim), init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    BiasParam (dim) = ParameterTensor ((dim), init='fixedValue', value=0.0)
    ScalarParam() = BiasParam (1)
  • SparseInput (shape, dynamicAxis='', tag='feature')
    ImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
    SparseImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
  • MeanVarNorm(feat) = PerDimMeanVarNormalization(feat, Mean (feat), InvStdDev (feat))
    PerDimMeanVarNormalization (x, mean, invStdDev),
    PerDimMeanVarDeNormalization (x, mean, invStdDev)
  • ReconcileDynamicAxis (dataInput, layoutInput)