Compartir a través de


FastForestRegressionFeaturizationEstimator Clase

Definición

un IEstimator<TTransformer> objeto para transformar el vector de características de entrada en características basadas en árboles.

public sealed class FastForestRegressionFeaturizationEstimator : Microsoft.ML.Trainers.FastTree.TreeEnsembleFeaturizationEstimatorBase
type FastForestRegressionFeaturizationEstimator = class
    inherit TreeEnsembleFeaturizationEstimatorBase
Public NotInheritable Class FastForestRegressionFeaturizationEstimator
Inherits TreeEnsembleFeaturizationEstimatorBase
Herencia
FastForestRegressionFeaturizationEstimator

Comentarios

Columnas de entrada y salida

Los datos de la columna de etiquetas de entrada deben ser Single. Los datos de columna de las características de entrada deben ser un vector de tamaño conocido de Single.

Este estimador genera las columnas siguientes:

Nombre de columna de salida Tipo de columna Descripción
Trees Vector de tamaño conocido de Single Valores de salida de todos los árboles. Su tamaño es idéntico al número total de árboles del modelo de conjunto de árboles.
Leaves Vector de tamaño conocido de Single Representación vectorial de 0 a 1 en los identificadores de todas las hojas en las que entra el vector de característica de entrada. Su tamaño es el número de hojas totales en el modelo de conjunto de árboles.
Paths Vector de tamaño conocido de Single Representación vectorial de 0 a 1 en las rutas de acceso a las que pasó el vector de característica de entrada para llegar a las hojas. Su tamaño es el número de nodos no hoja en el modelo de conjunto de árboles.

Esas columnas de salida son opcionales y el usuario puede cambiar sus nombres. Establezca los nombres de las columnas omitidas en NULL para que no se produzcan.

Detalles de predicción

Este estimador genera varias columnas de salida a partir de un modelo de conjunto de árboles. Supongamos que el modelo solo contiene un árbol de decisión:

               Node 0
               /    \
             /        \
           /            \
         /                \
       Node 1            Node 2
       /    \            /    \
     /        \        /        \
   /            \     Leaf -3  Node 3
  Leaf -1      Leaf -2         /    \
                             /        \
                            Leaf -4  Leaf -5

Supongamos que el vector de característica de entrada se encuentra en Leaf -1. La salida Trees puede ser un vector de 1 elemento donde el único valor es el valor de decisión llevado por Leaf -1. La salida Leaves es un vector de 0 a 1. Si la hoja alcanzada es la $i$-th (indizada por $-(i+1)$ por lo que la primera hoja es Leaf -1) hoja en el árbol, el valor $i$-th en Leaves sería 1 y todos los demás valores serían 0. La salida Paths es una representación de 0 a 1 de los nodos pasados antes de llegar a la hoja. El elemento $i$-th de Paths indica si se toca el nodo $i$-th (indexado por $i$). Por ejemplo, llegar a Leaf -1 $[1, 1, 0, 0]$ como Paths. Si hay varios árboles, este estimador simplemente concatena Treeslos de LeavesPathstodos los árboles (la información del primer árbol se incluye primero en los vectores concatenados).

Consulte la sección Consulte también los vínculos a ejemplos de uso.

Métodos

Fit(IDataView)

Genera un objeto TreeEnsembleModelParameters que asigna la columna a la que se llama InputColumnName en input tres columnas de salida.

(Heredado de TreeEnsembleFeaturizationEstimatorBase)
GetOutputSchema(SchemaShape)

PretrainedTreeFeaturizationEstimator agrega tres columnas float-vector a inputSchema. Dada una columna vectorial de características, las columnas agregadas son los valores de predicción de todos los árboles, los identificadores hoja en los que entra el vector de característica y las rutas de acceso a esas hojas.

(Heredado de TreeEnsembleFeaturizationEstimatorBase)

Métodos de extensión

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Anexe un "punto de control de almacenamiento en caché" a la cadena del estimador. Esto garantizará que los estimadores de nivel inferior se entrenarán con los datos almacenados en caché. Resulta útil tener un punto de control de almacenamiento en caché antes de que los instructores tomen varios pases de datos.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Dado un estimador, devuelva un objeto de ajuste que llamará a un delegado una vez Fit(IDataView) que se llame. A menudo, es importante que un estimador devuelva información sobre lo que cabe, por lo que el Fit(IDataView) método devuelve un objeto con tipo específico, en lugar de simplemente un general ITransformer. Sin embargo, al mismo tiempo, IEstimator<TTransformer> a menudo se forman en canalizaciones con muchos objetos, por lo que es posible que tengamos que crear una cadena de estimadores a través EstimatorChain<TLastTransformer> de donde el estimador para el que queremos obtener el transformador está enterrado en algún lugar de esta cadena. En ese escenario, podemos a través de este método adjuntar un delegado al que se llamará una vez que se llame a fit.

Se aplica a

Consulte también