Compartir a través de


TextCatalog.LatentDirichletAllocation Método

Definición

Cree un LatentDirichletAllocationEstimatorobjeto , que usa LightLDA para transformar texto (representado como vector de floats) en un vector de Single que indique la similitud del texto con cada tema identificado.

public static Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator LatentDirichletAllocation (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, int numberOfTopics = 100, float alphaSum = 100, float beta = 0.01, int samplingStepCount = 4, int maximumNumberOfIterations = 200, int likelihoodInterval = 5, int numberOfThreads = 0, int maximumTokenCountPerDocument = 512, int numberOfSummaryTermsPerTopic = 10, int numberOfBurninIterations = 10, bool resetRandomGenerator = false);
static member LatentDirichletAllocation : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * int * single * single * int * int * int * int * int * int * int * bool -> Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator
<Extension()>
Public Function LatentDirichletAllocation (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional numberOfTopics As Integer = 100, Optional alphaSum As Single = 100, Optional beta As Single = 0.01, Optional samplingStepCount As Integer = 4, Optional maximumNumberOfIterations As Integer = 200, Optional likelihoodInterval As Integer = 5, Optional numberOfThreads As Integer = 0, Optional maximumTokenCountPerDocument As Integer = 512, Optional numberOfSummaryTermsPerTopic As Integer = 10, Optional numberOfBurninIterations As Integer = 10, Optional resetRandomGenerator As Boolean = false) As LatentDirichletAllocationEstimator

Parámetros

catalog
TransformsCatalog.TextTransforms

Catálogo de la transformación.

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. Este estimador genera un vector de Single.

inputColumnName
String

Nombre de la columna que se va a transformar. Si se establece en null, el valor de outputColumnName se usará como origen. Este estimador funciona sobre un vector de Single.

numberOfTopics
Int32

Número de temas.

alphaSum
Single

Dirichlet anterior en vectores de tema de documento.

beta
Single

Dirichlet anterior en vectores vocab-topic.

samplingStepCount
Int32

Número de pasos de Hasting de Metrópolis.

maximumNumberOfIterations
Int32

Número de iteraciones.

likelihoodInterval
Int32

Probabilidad del registro de proceso en el conjunto de datos local en este intervalo de iteración.

numberOfThreads
Int32

Número de subprocesos de entrenamiento. El valor predeterminado depende del número de procesadores lógicos.

maximumTokenCountPerDocument
Int32

Umbral de recuento máximo de tokens por documento.

numberOfSummaryTermsPerTopic
Int32

Número de palabras que se resumen en el tema.

numberOfBurninIterations
Int32

Número de iteraciones que se queman.

resetRandomGenerator
Boolean

Restablezca el generador de números aleatorios para cada documento.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class LatentDirichletAllocation
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a small dataset as an IEnumerable.
            var samples = new List<TextData>()
            {
                new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
                "computes topic models." },

                new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
                "is the best for topic models." },

                new TextData(){ Text = "I like to eat broccoli and bananas." },
                new TextData(){ Text = "I eat bananas for breakfast." },
                new TextData(){ Text = "This car is expensive compared to last " +
                "week's price." },

                new TextData(){ Text = "This car was $X last week." },
            };

            // Convert training data to IDataView.
            var dataview = mlContext.Data.LoadFromEnumerable(samples);

            // A pipeline for featurizing the text/string using 
            // LatentDirichletAllocation API. o be more accurate in computing the
            // LDA features, the pipeline first normalizes text and removes stop
            // words before passing tokens (the individual words, lower cased, with
            // common words removed) to LatentDirichletAllocation.
            var pipeline = mlContext.Transforms.Text.NormalizeText("NormalizedText",
                "Text")
                .Append(mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
                    "NormalizedText"))
                .Append(mlContext.Transforms.Text.RemoveDefaultStopWords("Tokens"))
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Tokens"))
                .Append(mlContext.Transforms.Text.ProduceNgrams("Tokens"))
                .Append(mlContext.Transforms.Text.LatentDirichletAllocation(
                    "Features", "Tokens", numberOfTopics: 3));

            // Fit to data.
            var transformer = pipeline.Fit(dataview);

            // Create the prediction engine to get the LDA features extracted from
            // the text.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(transformer);

            // Convert the sample text into LDA features and print it.
            PrintLdaFeatures(predictionEngine.Predict(samples[0]));
            PrintLdaFeatures(predictionEngine.Predict(samples[1]));

            // Features obtained post-transformation.
            // For LatentDirichletAllocation, we had specified numTopic:3. Hence
            // each prediction has been featurized as a vector of floats with length
            // 3.

            //  Topic1  Topic2  Topic3
            //  0.6364  0.2727  0.0909
            //  0.5455  0.1818  0.2727
        }

        private static void PrintLdaFeatures(TransformedTextData prediction)
        {
            for (int i = 0; i < prediction.Features.Length; i++)
                Console.Write($"{prediction.Features[i]:F4}  ");
            Console.WriteLine();
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public float[] Features { get; set; }
        }
    }
}

Se aplica a