Compartir a través de


KernelExpansionCatalog.ApproximatedKernelMap Método

Definición

Cree un objeto ApproximatedKernelMappingEstimator que asigne vectores de entrada a un espacio de características dimensional bajo donde los productos internos aproximan una función de kernel invariable de desplazamiento.

public static Microsoft.ML.Transforms.ApproximatedKernelMappingEstimator ApproximatedKernelMap (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, int rank = 1000, bool useCosAndSinBases = false, Microsoft.ML.Transforms.KernelBase generator = default, int? seed = default);
static member ApproximatedKernelMap : Microsoft.ML.TransformsCatalog * string * string * int * bool * Microsoft.ML.Transforms.KernelBase * Nullable<int> -> Microsoft.ML.Transforms.ApproximatedKernelMappingEstimator
<Extension()>
Public Function ApproximatedKernelMap (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional rank As Integer = 1000, Optional useCosAndSinBases As Boolean = false, Optional generator As KernelBase = Nothing, Optional seed As Nullable(Of Integer) = Nothing) As ApproximatedKernelMappingEstimator

Parámetros

catalog
TransformsCatalog

Catálogo de la transformación.

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. El tipo de datos de esta columna será un vector de tamaño conocido de Single.

inputColumnName
String

Nombre de columna que se va a transformar. Si se establece en null, el valor de outputColumnName se usará como origen. Este estimador funciona en un vector de tamaño conocido del tipo de Single datos.

rank
Int32

Dimensión del espacio de características al que se va a asignar la entrada.

useCosAndSinBases
Boolean

Si truees , use las funciones cos y sin base para crear dos características para cada frecuencia aleatoria de Fourier. De lo contrario, solo se usarían las bases cos. Tenga en cuenta que si se establece trueen , la dimensión del espacio de características de salida será 2*rank.

generator
KernelBase

Argumento que indica qué kernel se va a usar. Las dos implementaciones disponibles son GaussianKernel y LaplacianKernel.

seed
Nullable<Int32>

Inicialización del generador de números aleatorios para generar las nuevas características (si no se especifica, se usa el aleatorio global).

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;

namespace Samples.Dynamic
{
    public static class ApproximatedKernelMap
    {
        // Transform feature vector to another non-linear space. See
        // https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[7] { 1, 1, 0, 0, 1, 0, 1} },
                new DataPoint(){ Features = new float[7] { 0, 0, 1, 0, 0, 1, 1} },
                new DataPoint(){ Features = new float[7] {-1, 1, 0,-1,-1, 0,-1} },
                new DataPoint(){ Features = new float[7] { 0,-1, 0, 1, 0,-1,-1} }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // ApproximatedKernel map takes data and maps it's to a random
            // low -dimensional space.
            var approximation = mlContext.Transforms.ApproximatedKernelMap(
                "Features", rank: 4, generator: new GaussianKernel(gamma: 0.7f),
                seed: 1);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var tansformer = approximation.Fit(data);
            var transformedData = tansformer.Transform(data);

            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));

            // Expected output:
            // -0.0119, 0.5867, 0.4942,  0.7041
            //  0.4720, 0.5639, 0.4346,  0.2671
            // -0.2243, 0.7071, 0.7053, -0.1681
            //  0.0846, 0.5836, 0.6575,  0.0581
        }

        private class DataPoint
        {
            [VectorType(7)]
            public float[] Features { get; set; }
        }

    }
}

Se aplica a