Uso de modelos de IA locales y personalizados con el SDK de Semantic Kernel
En este artículo se muestra cómo integrar modelos personalizados y locales en el SDK de Semantic Kernel y usarlos para finalizaciones de chat y generación de texto.
Puede adaptar los pasos para usarlos con cualquier modelo al que pueda acceder, independientemente de dónde o cómo acceda a él. Por ejemplo, puede integrar el modelo codellama con el SDK de Semantic Kernel para habilitar la generación y discusión de código.
Los modelos personalizados y locales suelen proporcionar acceso a través de las API REST, por ejemplo, consulte Compatibilidad con OpenAI de Ollama. Antes de integrar el modelo, deberá hospedarse y tener acceso a la aplicación .NET a través de HTTPS.
Requisitos previos
- Una cuenta de Azure con una suscripción activa. Cree una cuenta gratuita.
- .NET SDK
- Paquete NuGet de
Microsoft.SemanticKernel
- Un modelo personalizado o local, implementado y accesible para la aplicación .NET
Implementación de la generación de texto mediante un modelo local
En la sección siguiente se muestra cómo puede integrar el modelo con el SDK de Semantic Kernel y, a continuación, usarlo para generar finalizaciones de texto.
Cree una clase de servicio que implemente la interfaz
ITextGenerationService
. Por ejemplo:class MyTextGenerationService : ITextGenerationService { private IReadOnlyDictionary<string, object?>? _attributes; public IReadOnlyDictionary<string, object?> Attributes => _attributes ??= new Dictionary<string, object?>(); public string ModelUrl { get; init; } = "<default url to your model's Chat API>"; public required string ModelApiKey { get; init; } public async IAsyncEnumerable<StreamingTextContent> GetStreamingTextContentsAsync( string prompt, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default ) { // Build your model's request object, specify that streaming is requested MyModelRequest request = MyModelRequest.FromPrompt(prompt, executionSettings); request.Stream = true; // Send the completion request via HTTP using var httpClient = new HttpClient(); // Send a POST to your model with the serialized request in the body using HttpResponseMessage httpResponse = await httpClient.PostAsJsonAsync( ModelUrl, request, cancellationToken ); // Verify the request was completed successfully httpResponse.EnsureSuccessStatusCode(); // Read your models response as a stream using StreamReader reader = new(await httpResponse.Content.ReadAsStreamAsync(cancellationToken)); // Iteratively read a chunk of the response until the end of the stream // It is more efficient to use a buffer that is the same size as the internal buffer of the stream // If the size of the internal buffer was unspecified when the stream was constructed, its default size is 4 kilobytes (2048 UTF-16 characters) char[] buffer = new char[2048]; while (!reader.EndOfStream) { // Check the cancellation token with each iteration cancellationToken.ThrowIfCancellationRequested(); // Fill the buffer with the next set of characters, track how many characters were read int readCount = reader.Read(buffer, 0, buffer.Length); // Convert the character buffer to a string, only include as many characters as were just read string chunk = new(buffer, 0, readCount); yield return new StreamingTextContent(chunk); } } public async Task<IReadOnlyList<TextContent>> GetTextContentsAsync( string prompt, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, CancellationToken cancellationToken = default ) { // Build your model's request object MyModelRequest request = MyModelRequest.FromPrompt(prompt, executionSettings); // Send the completion request via HTTP using var httpClient = new HttpClient(); // Send a POST to your model with the serialized request in the body using HttpResponseMessage httpResponse = await httpClient.PostAsJsonAsync( ModelUrl, request, cancellationToken ); // Verify the request was completed successfully httpResponse.EnsureSuccessStatusCode(); // Deserialize the response body to your model's response object // Handle when the deserialization fails and returns null MyModelResponse response = await httpResponse.Content.ReadFromJsonAsync<MyModelResponse>(cancellationToken) ?? throw new Exception("Failed to deserialize response from model"); // Convert your model's response into a list of ChatMessageContent return response .Completions.Select<string, TextContent>(completion => new(completion)) .ToImmutableList(); } }
Incluya la nueva clase de servicio al compilar el
Kernel
. Por ejemplo:IKernelBuilder builder = Kernel.CreateBuilder(); // Add your text generation service as a singleton instance builder.Services.AddKeyedSingleton<ITextGenerationService>( "myTextService1", new MyTextGenerationService { // Specify any properties specific to your service, such as the url or API key ModelUrl = "https://localhost:38748", ModelApiKey = "myApiKey" } ); // Alternatively, add your text generation service as a factory method builder.Services.AddKeyedSingleton<ITextGenerationService>( "myTextService2", (_, _) => new MyTextGenerationService { // Specify any properties specific to your service, such as the url or API key ModelUrl = "https://localhost:38748", ModelApiKey = "myApiKey" } ); // Add any other Kernel services or configurations // ... Kernel kernel = builder.Build();
Envíe una solicitud de generación de texto al modelo directamente a través del
Kernel
o mediante la clase de servicio. Por ejemplo:var executionSettings = new PromptExecutionSettings { // Add execution settings, such as the ModelID and ExtensionData ModelId = "MyModelId", ExtensionData = new Dictionary<string, object> { { "MaxTokens", 500 } } }; // Send a prompt to your model directly through the Kernel // The Kernel response will be null if the model can't be reached string prompt = "Please list three services offered by Azure"; string? response = await kernel.InvokePromptAsync<string>(prompt); Console.WriteLine($"Output: {response}"); // Alteratively, send a prompt to your model through the text generation service ITextGenerationService textService = kernel.GetRequiredService<ITextGenerationService>(); TextContent responseContents = await textService.GetTextContentAsync( prompt, executionSettings ); Console.WriteLine($"Output: {responseContents.Text}");
Implementación de la finalización del chat mediante un modelo local
En la sección siguiente se muestra cómo puede integrar el modelo con el SDK de Semantic Kernel y, a continuación, usarlo para las finalizaciones de chat.
Cree una clase de servicio que implemente la interfaz
IChatCompletionService
. Por ejemplo:class MyChatCompletionService : IChatCompletionService { private IReadOnlyDictionary<string, object?>? _attributes; public IReadOnlyDictionary<string, object?> Attributes => _attributes ??= new Dictionary<string, object?>(); public string ModelUrl { get; init; } = "<default url to your model's Chat API>"; public required string ModelApiKey { get; init; } public async Task<IReadOnlyList<ChatMessageContent>> GetChatMessageContentsAsync( ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, CancellationToken cancellationToken = default ) { // Build your model's request object MyModelRequest request = MyModelRequest.FromChatHistory(chatHistory, executionSettings); // Send the completion request via HTTP using var httpClient = new HttpClient(); // Send a POST to your model with the serialized request in the body using HttpResponseMessage httpResponse = await httpClient.PostAsJsonAsync( ModelUrl, request, cancellationToken ); // Verify the request was completed successfully httpResponse.EnsureSuccessStatusCode(); // Deserialize the response body to your model's response object // Handle when the deserialization fails and returns null MyModelResponse response = await httpResponse.Content.ReadFromJsonAsync<MyModelResponse>(cancellationToken) ?? throw new Exception("Failed to deserialize response from model"); // Convert your model's response into a list of ChatMessageContent return response .Completions.Select<string, ChatMessageContent>(completion => new(AuthorRole.Assistant, completion) ) .ToImmutableList(); } public async IAsyncEnumerable<StreamingChatMessageContent> GetStreamingChatMessageContentsAsync( ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default ) { // Build your model's request object, specify that streaming is requested MyModelRequest request = MyModelRequest.FromChatHistory(chatHistory, executionSettings); request.Stream = true; // Send the completion request via HTTP using var httpClient = new HttpClient(); // Send a POST to your model with the serialized request in the body using HttpResponseMessage httpResponse = await httpClient.PostAsJsonAsync( ModelUrl, request, cancellationToken ); // Verify the request was completed successfully httpResponse.EnsureSuccessStatusCode(); // Read your models response as a stream using StreamReader reader = new(await httpResponse.Content.ReadAsStreamAsync(cancellationToken)); // Iteratively read a chunk of the response until the end of the stream // It is more efficient to use a buffer that is the same size as the internal buffer of the stream // If the size of the internal buffer was unspecified when the stream was constructed, its default size is 4 kilobytes (2048 UTF-16 characters) char[] buffer = new char[2048]; while (!reader.EndOfStream) { // Check the cancellation token with each iteration cancellationToken.ThrowIfCancellationRequested(); // Fill the buffer with the next set of characters, track how many characters were read int readCount = reader.Read(buffer, 0, buffer.Length); // Convert the character buffer to a string, only include as many characters as were just read string chunk = new(buffer, 0, readCount); yield return new StreamingChatMessageContent(AuthorRole.Assistant, chunk); } } }
Incluya la nueva clase de servicio al compilar el
Kernel
. Por ejemplo:IKernelBuilder builder = Kernel.CreateBuilder(); // Add your chat completion service as a singleton instance builder.Services.AddKeyedSingleton<IChatCompletionService>( "myChatService1", new MyChatCompletionService { // Specify any properties specific to your service, such as the url or API key ModelUrl = "https://localhost:38748", ModelApiKey = "myApiKey" } ); // Alternatively, add your chat completion service as a factory method builder.Services.AddKeyedSingleton<IChatCompletionService>( "myChatService2", (_, _) => new MyChatCompletionService { // Specify any properties specific to your service, such as the url or API key ModelUrl = "https://localhost:38748", ModelApiKey = "myApiKey" } ); // Add any other Kernel services or configurations // ... Kernel kernel = builder.Build();
Envíe una solicitud de finalización de chat al modelo directamente a través del
Kernel
o mediante la clase de servicio. Por ejemplo:var executionSettings = new PromptExecutionSettings { // Add execution settings, such as the ModelID and ExtensionData ModelId = "MyModelId", ExtensionData = new Dictionary<string, object> { { "MaxTokens", 500 } } }; // Send a string representation of the chat history to your model directly through the Kernel // This uses a special syntax to denote the role for each message // For more information on this syntax see: // https://learn.microsoft.com/en-us/semantic-kernel/prompts/your-first-prompt?tabs=Csharp string prompt = """ <message role="system">the initial system message for your chat history</message> <message role="user">the user's initial message</message> """; string? response = await kernel.InvokePromptAsync<string>(prompt); Console.WriteLine($"Output: {response}"); // Alteratively, send a prompt to your model through the chat completion service // First, initialize a chat history with your initial system message string systemMessage = "<the initial system message for your chat history>"; Console.WriteLine($"System Prompt: {systemMessage}"); var chatHistory = new ChatHistory(systemMessage); // Add the user's input to your chat history string userRequest = "<the user's initial message>"; Console.WriteLine($"User: {userRequest}"); chatHistory.AddUserMessage(userRequest); // Get the models response and add it to the chat history IChatCompletionService service = kernel.GetRequiredService<IChatCompletionService>(); ChatMessageContent responseMessage = await service.GetChatMessageContentAsync( chatHistory, executionSettings ); Console.WriteLine($"Assistant: {responseMessage.Content}"); chatHistory.Add(responseMessage); // Continue sending and receiving messages between the user and model // ...