Databricks Runtime 10.4 LTS para Machine Learning
Databricks Runtime 10.4 LTS para Machine Learning proporciona un entorno listo para usar, de aprendizaje automático y ciencia de datos, basado en Databricks Runtime 10.4 LTS. Databricks Runtime ML contiene muchas bibliotecas populares de aprendizaje automático, incluidas TensorFlow, PyTorch y XGBoost. Databricks Runtime ML incluye AutoML, una herramienta para entrenar automáticamente canalizaciones de aprendizaje automático. Databricks Runtime ML también admite el entrenamiento de aprendizaje profundo distribuido mediante Horovod.
Nota:
LTS significa que esta versión tiene soporte técnico a largo plazo. Consulte Ciclo de vida de la versión de Databricks Runtime LTS.
Para obtener más información, incluidas las instrucciones para crear un clúster de Databricks Runtime ML, consulte IA y aprendizaje automático en Databricks.
Sugerencia
Para ver las notas de la versión de las versiones de Databricks Runtime que han llegado a la finalización del soporte (EoS), vea las Notas de la versión de finalización del soporte de Databricks Runtime. Las versiones de Databricks Runtime EoS se han retirado y es posible que no se actualicen.
Nuevas características y mejoras
Databricks Runtime 10.4 LTS ML se basa en Databricks Runtime 10.4 LTS. Para más información sobre las novedades de Databricks Runtime 10.4 LTS, incluidos Apache Spark MLlib y SparkR, consulte las notas de la versión de Databricks Runtime 10.4 LTS.
Mejoras en Mosaico de AutoML
Las siguientes mejoras se han realizado en Mosaic AutoML.
Mosaic AutoML está disponible con carácter general
A partir de Databricks Runtime 10.4 LTS ML, Mosaic AutoML está disponible con carácter general.
Imputación de valores que faltan
Ahora puede especificar cómo se imputan los valores NULL. De forma predeterminada, AutoML selecciona un método de imputación basado en el tipo de columna y el contenido. Vea Imputar los valores que faltan para obtener más información).
Selección de columnas desde la interfaz de usuario
Para problemas de clasificación y regresión, ahora puede usar la interfaz de usuario además de la API a fin de especificar las columnas que AutoML debe omitir durante sus cálculos. Vea selección de columnas.
Nuevo tipo de datos
AutoML ahora admite tipos de matrices numéricas.
Ubicación personalizada de experimentos y cuadernos generados
Ahora puede especificar una ubicación en el área de trabajo donde AutoML debe guardar los experimentos y cuadernos generados. Utilice el parámetro experiment_dir
. Consulte La referencia de la API de Python de AutoML de Mosaico.
Mejoras en el Almacén de características de Databricks
Se han realizado las siguientes mejoras en el Almacén de características de Databricks.
- Ahora puede registrar una tabla Delta existente como tabla de características.
Entorno del sistema
El entorno del sistema de Databricks Runtime 10.4 LTS ML se diferencia del de Databricks Runtime 10.4 LTS en lo siguiente:
- DBUtils: Databricks Runtime ML no incluye la utilidad de biblioteca (dbutils.library) (heredada).
Use comandos
%pip
en su lugar. Consulte Bibliotecas de Python cuyo ámbito es Notebook. - En los clústeres de GPU, Databricks Runtime ML incluye las siguientes bibliotecas de GPU de NVIDIA:
- CUDA 11.0
- cuDNN 8.0.5.39
- NCCL 2.10.3
- TensorRT 7.2.2
Bibliotecas
En las secciones siguientes se enumeran las bibliotecas incluidas en Databricks Runtime 10.4 LTS ML, que difieren de las incluidas en Databricks Runtime 10.4 LTS.
En esta sección:
- Bibliotecas de nivel superior
- Bibliotecas de Python
- Bibliotecas de R
- Bibliotecas de Java y Scala (clúster de Scala 2.12)
Bibliotecas de nivel superior
Databricks Runtime 10.4 LTS ML incluye las siguientes bibliotecas de nivel superior:
- GraphFrames
- Horovod y HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Bibliotecas de Python
Databricks Runtime 10.4 LTS ML usa Virtualenv para la administración de paquetes de Python e incluye muchos paquetes de ML populares.
Además de los paquetes especificados en las secciones siguientes, Databricks Runtime 10.4 LTS ML también incluye los paquetes siguientes:
- hyperopt 0.2.7.db1
- sparkdl 2.2.0-db5
- feature_store 0.3.8
- automl 1.7.2
Bibliotecas de Python en clústeres de CPU
Para reproducir el entorno de Python de Databricks Runtime ML en el entorno virtual local de Python, descargue el archivo requirements-10.4.txt y ejecute pip install -r requirements-10.4.txt
. Este comando instala todas las bibliotecas de código abierto que usa Databricks Runtime ML, pero no instala bibliotecas desarrolladas de Azure Databricks, como databricks-automl
, databricks-feature-store
o la bifurcación de Databricks de hyperopt
.
Biblioteca | Versión | Biblioteca | Versión | Biblioteca | Versión |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | click | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.3.2 | criptografía | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.6 |
databricks-cli | 0.16.3 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
decorator | 5.0.6 | defusedxml | 0.7.1 | dill | 0.3.2 |
diskcache | 5.2.1 | distlib | 0.3.4 | distro-info | 0.23ubuntu1 |
entrypoints | 0,3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2.0 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.7 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | hijri-converter | 2.2.3 | vacaciones | 0,12 |
horovod | 0.23.0 | htmlmin | 0.1.12 | huggingface-hub | 0.1.2 |
idna | 2.10 | ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
itsdangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
keras-preprocessing | 1.1.2 | kiwisolver | 1.3.1 | koalas | 1.8.2 |
korean-lunar-calendar | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.7 |
murmurhash | 1.0.5 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2.5 |
nltk | 3.6.1 | notebook | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
empaquetado | 21,3 | pandas | 1.2.4 | pandas-profiling | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.0 | patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.0 | pickleshare | 0.7.5 |
Pillow | 8.2.0 | pip | 21.0.1 | plotly | 5.5.0 |
pmdarima | 1.8.4 | preshed | 3.0.5 | prometheus-client | 0.10.1 |
prompt-toolkit | 3.0.17 | prophet | 1.0.1 | protobuf | 3.17.2 |
psutil | 5.8.0 | psycopg2 | 2.8.5 | ptyprocess | 0.7.0 |
pyarrow | 4.0.0 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.9.1 | pycparser | 2,20 | pydantic | 1.8.2 |
Pygments | 2.8.1 | PyGObject | 3.36.0 | PyMeeus | 0.5.11 |
PyNaCl | 1.4.0 | pyodbc | 4.0.30 | pyparsing | 2.4.7 |
pyrsistent | 0.17.3 | pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 |
Python-dateutil | 2.8.1 | python-editor | 1.0.4 | python-engineio | 4.3.0 |
python-socketio | 5.4.1 | pytz | 2020.5 | PyWavelets | 1.1.1 |
PyYAML | 5.4.1 | pyzmq | 20.0.0 | regex | 2021.4.4 |
Solicitudes | 2.25.1 | requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 |
rsa | 4.7.2 | s3transfer | 0.3.7 | sacremoses | 0.0.46 |
scikit-learn | 0.24.1 | scipy | 1.6.2 | seaborn | 0.11.1 |
Send2Trash | 1.5.0 | setuptools | 52.0.0 | setuptools-git | 1.2 |
shap | 0.40.0 | simplejson | 3.17.2 | six (seis) | 1.15.0 |
segmentación | 0.0.7 | smart-open | 5.2.0 | smmap | 3.0.5 |
spacy | 3.2.1 | spacy-legacy | 3.0.8 | spacy-loggers | 1.0.1 |
spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 | srsly | 2.4.1 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulate | 0.8.7 |
tangled-up-in-unicode | 0.1.0 | tenacity | 6.2.0 | tensorboard | 2.8.0 |
tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 |
tensorflow-cpu | 2.8.0 | tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | testpath | 0.4.4 |
tf-estimator-nightly | 2.8.0.dev2021122109 | thinc | 8.0.12 | threadpoolctl | 2.1.0 |
tokenizers | 0.10.3 | torch | 1.10.2+cpu | torchvision | 0.11.3+cpu |
tornado | 6.1 | tqdm | 4.59.0 | traitlets | 5.0.5 |
transformadores | 4.16.2 | typer | 0.3.2 | typing-extensions | 3.7.4.3 |
ujson | 4.0.2 | unattended-upgrades | 0,1 | urllib3 | 1.25.11 |
virtualenv | 20.4.1 | visions | 0.7.4 | wasabi | 0.8.2 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | wheel | 0.36.2 | widgetsnbextension | 3.5.1 |
wrapt | 1.12.1 | xgboost | 1.5.2 | zipp | 3.4.1 |
Bibliotecas de Python en clústeres de GPU
Biblioteca | Versión | Biblioteca | Versión | Biblioteca | Versión |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | click | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.3.2 | criptografía | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.6 |
databricks-cli | 0.16.3 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
decorator | 5.0.6 | defusedxml | 0.7.1 | dill | 0.3.2 |
diskcache | 5.2.1 | distlib | 0.3.4 | distro-info | 0.23ubuntu1 |
entrypoints | 0,3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2.0 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.7 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | hijri-converter | 2.2.3 | vacaciones | 0,12 |
horovod | 0.23.0 | htmlmin | 0.1.12 | huggingface-hub | 0.1.2 |
idna | 2.10 | ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
itsdangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
keras-preprocessing | 1.1.2 | kiwisolver | 1.3.1 | koalas | 1.8.2 |
korean-lunar-calendar | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.7 |
murmurhash | 1.0.5 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2.5 |
nltk | 3.6.1 | notebook | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
empaquetado | 21,3 | pandas | 1.2.4 | pandas-profiling | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.0 | patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.0 | pickleshare | 0.7.5 |
Pillow | 8.2.0 | pip | 21.0.1 | plotly | 5.5.0 |
pmdarima | 1.8.4 | preshed | 3.0.5 | prompt-toolkit | 3.0.17 |
prophet | 1.0.1 | protobuf | 3.17.2 | psutil | 5.8.0 |
psycopg2 | 2.8.5 | ptyprocess | 0.7.0 | pyarrow | 4.0.0 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pybind11 | 2.9.1 |
pycparser | 2,20 | pydantic | 1.8.2 | Pygments | 2.8.1 |
PyGObject | 3.36.0 | PyMeeus | 0.5.11 | PyNaCl | 1.4.0 |
pyodbc | 4.0.30 | pyparsing | 2.4.7 | pyrsistent | 0.17.3 |
pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 | Python-dateutil | 2.8.1 |
python-editor | 1.0.4 | python-engineio | 4.3.0 | python-socketio | 5.4.1 |
pytz | 2020.5 | PyWavelets | 1.1.1 | PyYAML | 5.4.1 |
pyzmq | 20.0.0 | regex | 2021.4.4 | Solicitudes | 2.25.1 |
requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 | rsa | 4.7.2 |
s3transfer | 0.3.7 | sacremoses | 0.0.46 | scikit-learn | 0.24.1 |
scipy | 1.6.2 | seaborn | 0.11.1 | Send2Trash | 1.5.0 |
setuptools | 52.0.0 | setuptools-git | 1.2 | shap | 0.40.0 |
simplejson | 3.17.2 | six (seis) | 1.15.0 | segmentación | 0.0.7 |
smart-open | 5.2.0 | smmap | 3.0.5 | spacy | 3.2.1 |
spacy-legacy | 3.0.8 | spacy-loggers | 1.0.1 | spark-tensorflow-distributor | 1.0.0 |
sqlparse | 0.4.1 | srsly | 2.4.1 | ssh-import-id | 5.10 |
statsmodels | 0.12.2 | tabulate | 0.8.7 | tangled-up-in-unicode | 0.1.0 |
tenacity | 6.2.0 | tensorboard | 2.8.0 | tensorboard-data-server | 0.6.1 |
tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 | tensorflow | 2.8.0 |
tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 | termcolor | 1.1.0 |
terminado | 0.9.4 | testpath | 0.4.4 | tf-estimator-nightly | 2.8.0.dev2021122109 |
thinc | 8.0.12 | threadpoolctl | 2.1.0 | tokenizers | 0.10.3 |
torch | 1.10.2+cu111 | torchvision | 0.11.3+cu111 | tornado | 6.1 |
tqdm | 4.59.0 | traitlets | 5.0.5 | transformadores | 4.16.2 |
typer | 0.3.2 | typing-extensions | 3.7.4.3 | ujson | 4.0.2 |
unattended-upgrades | 0,1 | urllib3 | 1.25.11 | virtualenv | 20.4.1 |
visions | 0.7.4 | wasabi | 0.8.2 | wcwidth | 0.2.5 |
webencodings | 0.5.1 | websocket-client | 0.57.0 | Werkzeug | 1.0.1 |
wheel | 0.36.2 | widgetsnbextension | 3.5.1 | wrapt | 1.12.1 |
xgboost | 1.5.2 | zipp | 3.4.1 |
Paquetes de Spark que contienen módulos de Python
Paquete de Spark | Módulo de Python | Versión |
---|---|---|
graphframes | graphframes | 0.8.2-db1-spark3.2 |
Bibliotecas de R
Las bibliotecas de R son idénticas a las bibliotecas de R de Databricks Runtime 10.4 LTS.
Bibliotecas de Java y Scala (clúster de Scala 2.12)
Además de las bibliotecas de Java y Scala de Databricks Runtime 10.4 LTS, Databricks Runtime 10.4 LTS ML contiene los siguientes archivos JAR:
Clústeres de CPU
Identificador de grupo | Identificador de artefacto | Versión |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Clústeres de GPU
Identificador de grupo | Identificador de artefacto | Versión |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |