Ejemplos de configuración de agrupación
En este artículo se proporciona una configuración de ejemplo para las características de Agrupaciones de recursos de Databricks y los casos de uso comunes de agrupación.
Sugerencia
Algunos de los ejemplos de este artículo, así como otros, se pueden encontrar en el repositorio bundle-examples.
Trabajo que usa proceso sin servidor
Databricks Asset Bundles admite trabajos que se ejecutan en proceso sin servidor. Para configurarlo, puede omitir la configuración clusters
para un trabajo, o bien puede especificar un entorno como se muestra en los ejemplos siguientes.
# A serverless job (no cluster definition)
resources:
jobs:
serverless_job_no_cluster:
name: serverless_job_no_cluster
email_notifications:
on_failure:
- someone@example.com
tasks:
- task_key: notebook_task
notebook_task:
notebook_path: ../src/notebook.ipynb
# A serverless job (environment spec)
resources:
jobs:
serverless_job_environment:
name: serverless_job_environment
tasks:
- task_key: task
spark_python_task:
python_file: ../src/main.py
# The key that references an environment spec in a job.
environment_key: default
# A list of task execution environment specifications that can be referenced by tasks of this job.
environments:
- environment_key: default
# Full documentation of this spec can be found at:
# https://docs.databricks.com/api/workspace/jobs/create#environments-spec
spec:
client: "1"
dependencies:
- cowsay
Canalización que usa proceso sin servidor
Los conjuntos de recursos de Databricks admiten canalizaciones que se ejecutan en proceso sin servidor. Para configurarlo, establezca el valor de canalización serverless
en true
. La siguiente configuración de ejemplo define una canalización que se ejecuta en proceso sin servidor y un trabajo que desencadena una actualización de la canalización cada hora.
# A pipeline that runs on serverless compute
resources:
pipelines:
my_pipeline:
name: my_pipeline
target: ${bundle.environment}
serverless: true
catalog: users
libraries:
- notebook:
path: ../src/my_pipeline.ipynb
configuration:
bundle.sourcePath: /Workspace/${workspace.file_path}/src
# This defines a job to refresh a pipeline that is triggered every hour
resources:
jobs:
my_job:
name: my_job
# Run this job once an hour.
trigger:
periodic:
interval: 1
unit: HOURS
email_notifications:
on_failure:
- someone@example.com
tasks:
- task_key: refresh_pipeline
pipeline_task:
pipeline_id: ${resources.pipelines.my_pipeline.id}
Trabajo con un cuaderno de SQL
En la siguiente configuración de ejemplo se define un trabajo con un cuaderno de SQL.
resources:
jobs:
job_with_sql_notebook:
name: Job to demonstrate using a SQL notebook with a SQL warehouse
tasks:
- task_key: notebook
notebook_task:
notebook_path: ./select.sql
warehouse_id: 799f096837fzzzz4
Trabajo con archivos de varias ruedas
En la siguiente configuración de ejemplo se define una agrupación que contiene un trabajo con varios archivos *.whl
.
# job.yml
resources:
jobs:
example_job:
name: "Example with multiple wheels"
tasks:
- task_key: task
spark_python_task:
python_file: ../src/call_wheel.py
libraries:
- whl: ../my_custom_wheel1/dist/*.whl
- whl: ../my_custom_wheel2/dist/*.whl
new_cluster:
node_type_id: i3.xlarge
num_workers: 0
spark_version: 14.3.x-scala2.12
spark_conf:
"spark.databricks.cluster.profile": "singleNode"
"spark.master": "local[*, 4]"
custom_tags:
"ResourceClass": "SingleNode"
# databricks.yml
bundle:
name: job_with_multiple_wheels
include:
- ./resources/job.yml
workspace:
host: https://myworkspace.cloud.databricks.com
artifacts:
my_custom_wheel1:
type: whl
build: poetry build
path: ./my_custom_wheel1
my_custom_wheel2:
type: whl
build: poetry build
path: ./my_custom_wheel2
targets:
dev:
default: true
mode: development
Trabajo que usa un archivo de requirements.txt
En la siguiente configuración de ejemplo se define un trabajo que usa un archivo requirements.txt.
resources:
jobs:
job_with_requirements_txt:
name: Example job that uses a requirements.txt file
tasks:
- task_key: task
job_cluster_key: default
spark_python_task:
python_file: ../src/main.py
libraries:
- requirements: /Workspace/${workspace.file_path}/requirements.txt
Agrupación que carga un archivo JAR en Unity Catalog
Puede especificar volúmenes de Unity Catalog como una ruta de acceso de artefacto para que todos los artefactos, como archivos JAR y archivos de rueda, se carguen en volúmenes del Unity Catalog. En el siguiente paquete de ejemplo se carga un archivo JAR en Unity Catalog. Para obtener información sobre la asignación artifact_path
, vea artifact_path.
bundle:
name: jar-bundle
workspace:
host: https://myworkspace.cloud.databricks.com
artifact_path: /Volumes/main/default/my_volume
artifacts:
my_java_code:
path: ./sample-java
build: "javac PrintArgs.java && jar cvfm PrintArgs.jar META-INF/MANIFEST.MF PrintArgs.class"
files:
- source: ./sample-java/PrintArgs.jar
resources:
jobs:
jar_job:
name: "Spark Jar Job"
tasks:
- task_key: SparkJarTask
new_cluster:
num_workers: 1
spark_version: "14.3.x-scala2.12"
node_type_id: "i3.xlarge"
spark_jar_task:
main_class_name: PrintArgs
libraries:
- jar: ./sample-java/PrintArgs.jar